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1. Introduction 

Agility in tactical decision making, mission management, and control is the key attribute 
for enabling heterogeneous multi-unmanned vehicle (UxV) teams to successfully manage 
the “fog of war” with its inherent complex, ambiguous, and time-challenged conditions. 
Mission effectiveness will rely on rapid identification and management of uncertainties 
that can disrupt an autonomous team’s ability to complete complex operations safely. As a 
result, many of today’s operators use complex human-machine systems on a daily basis. 
Further, as operators have to plan and direct multiple UxVs simultaneously to achieve 
mission objectives, human operators are often not able to maintain efficient and effective 
performance (Chen and Barnes 2012a). These decrements, which may lead to both mission 
failure and loss of life and property, may partially stem from the high information flow rate 
required to supervise multiple UxVs concurrently (Paas and Merriënboer 1994). Thus it is 
necessary to lower the cognitive load placed on the operator (Hwang et al. 2008) by 
presenting appropriate information when needed (Lyons and Havig 2014).  

To decide what information is presented to the operator, intelligent agents (IAs) have been 
created to perform the role of an intermediary between the operator and each individual 
unmanned vehicle. In artificial intelligence, the concept of an agent is defined as anything 
that has the ability to perceive its environment through sensors and act upon its 
environment (Russel and Norvig 2009). An IA is an agent that has some level of autonomy, 
meaning it can act with limited authority from others and is responsible for reaching 
decisions (Russel and Norvig 2009). We specifically use the term IA to denote a software 
agent that is incorporated into a human machine system for the purpose of shared decision 
making between the IA and the system’s operator (e.g., Chen et al. 2014). Thus, instead of 
manually issuing commands to each UxV, the operator acts as a supervisor receiving 
feedback from and providing instructions to an IA who relays these commands to the UxVs 
to accomplish their shared mission (Chen and Barnes 2012b).  

In this design the human operator always has the ultimate decision authority, which is an 
example of mixed-initiative decision making as defined by Goodrich (2010). However, 
with increasing levels of autonomy, human operators may not understand the information 
provided by the IA (i.e., generating automated plans) due to the operators’ difficulties 
understanding the rationale behind the decision-making processes (Linegang et al. 2006). 
This lack of understanding may lead to disuse or overreliance of the system (Parasuraman 
and Riley 1997). To alleviate this problem and facilitate fluid mixed-initiative decision 
making between the human operator and the IA, the agent-user interface must support 
optimal transparency, conveying the rationale behind its recommendations without 
burdening the operator with an overwhelming amount of data (Lee and See 2004). One 
approach that has been used in the literature with success has been the Playbook 
architecture (Miller et al. 2004). In this technique the human operator acts similarly to a 
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coach of a sports team who conveys his or her goals and directs specific behaviors by 
calling a particular play (a specified command that conveys specific behaviors to be 
completed) and the UxVs act as the “players” who autonomously carry out the instructions 
contained in the play. 

1.1 Automation Transparency 

The 3 most common challenges for humans interacting with highly automated systems is 
understanding the current system state, comprehending the reasons for its current behavior, 
and projecting what its next behavior will be (Sarter and Woods 1995). In response to those 
3 critical questions, transparency in automated systems has become a critical research 
question. Agent transparency is the IA’s ability to communicate information to the human 
operator in a clear and efficient manner, which allows the operator to develop an accurate 
mental model of the system and its behavior leading to calibrated trust in the system (Chen 
et al. 2014; Lee and See 2004).  

Previous research has recommended that the system should make its purpose, process, 
performance (3Ps) and a history of 3Ps available to the operator to increase the operator’s 
understanding of the system (Lee and See 2004). Lee and See stated that both system 
capabilities and limitations should also be shown to the operator to assist in decision 
making. However, to reduce operator workload, this information should be in a simplified 
form to limit the amount of processing required for understanding and not overwhelm the 
operator (Cook and Smallman 2008; Neyedli et al. 2011). Thus, a transparent system 
should maximize operator decision-making performance and allow the operator to 
maintain overall situation awareness (SA) not only of the mission environment, but also of 
the state and intent of the system themselves (Chen et al. 2011; Endsley 1995).  

The SA-based agent transparency model (SAT) (Chen et al. 2014) leveraged this 
effectiveness requirement and developed a useful theoretical framework to determine what 
type of information to display to an operator to maximize their situation awareness and 
assist the operator in developing an accurate mental model creating calibrated system trust. 
The SAT model builds upon the SA theory developed by Endsley (1995), the beliefs, 
desires, and intention agent framework (Rao and Georgeff, 1995), the 3P model (Lee and 
See 2004), and our previous work (Chen and Barnes 2012a; 2012b) (see Fig.1).  
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Fig. 1 SA-based Agent Transparency model diagram (Chen et al. 2014) 

In the first level, the operator is presented with basic information about the state of the 
world and the IA, such as the agent’s current state and goals, intentions, and proposed 
actions. The second level builds connections between these basic pieces of rationale 
information to display the agent’s current state and goals, intentions, and reasoning behind 
its proposed actions Finally, the third level provides the operator with information 
regarding the projection of future states of the system, such as the predicted consequences 
of the IA’s decisions and any uncertainties associated with the systems actions (Chen et al. 
2014). Previous research has supported the display of information that supports agent 
transparency to the operator as a way for mitigating uncertainties regarding a system’s 
performance (Lyons and Havig 2014). Additionally, displaying a system’s reliability, 
which has led to human operators adapting optimal reliance strategies (Wang et al. 2009), 
is similar to SAT Level 3, which suggests history of past performance can support optimal 
decision making (Chen et al. 2014). The benefits of including SAT-based information in 
an automated system are further supported by the notion that humans recalibrate their trust 
following automation failures when aware of system limitations (Dzindolet et al. 2003).  

1.2 Trust in Automation 

Proper calibration of trust is critical in high-risk situations, such as military operations 
(Groom and Nass 2007; Lee and See 2004). Over-reliance on an automated system when 
it is not appropriate (automation misuse) can lead to dangerous consequences, such as loss 

 

 
SA-based Agent Transparency (SAT) Model 

What’s going on and what is 

the agent trying to achieve? Why is the agent doing it? What should the operator 

expect to happen? 



 

4 

of life and property, while disusing the system when it can provide a benefit (automation 
disuse) is also erroneous, as the system could provide the operator with lower workload, 
faster response time, or greater performance the absence of which may be costly to the 
overall mission (Parasuraman and Riley 1997). Thus it is important for the operator to 
develop a properly calibrated trust in the system. Calibrated trust means that the operator 
has an accurate mental model of the system and relies on the system within the system’s 
capabilities and is cognizant of its limitations, which leads the operator to override the 
system in situations outside of its limitations (Lee and See 2004).  

Recent research suggested that the calibration of trust depends not only on the system’s 
reliability but also on the perceived workload and usability (Hoff and Bashir 2015). In other 
words, displays that have more information to support transparency will be rated as more 
usable and more trustworthy because it is easier for the operator to form an accurate mental 
model of the system’s 3Ps; however, more information does not always equate to relevant 
and good information. If the increased information processing requirements caused by the 
additional information shown to the operator increase workload, the display may be seen 
as less usable and will be trusted less. Therefore, we hypothesize that participant ratings of 
trust will increase linearly with increases in transparency level as the information displayed 
was developed based on the SAT model.  

1.3 Workload 

Another concern regarding autonomous systems is operator workload, which is the cost of 
performing a task that reduces an individual’s ability to complete additional tasks (Cain 
2007). Increased operator workload decreases performance and SA, and leads to incorrect 
automation usage decisions (Beck et al. 2007; Chen and Barnes 2012b; Parasuraman and 
Riley 1997). Operator workload is also a concern, as it may increase as agent transparency 
increases. Chen et al. (2014) stated that to support increased agent transparency, additional 
elements must be added to the interface; Lyons and Havig (2014) further stated that these 
additions may lead the operator to process more information, increasing workload. 
Conversely, the additional interface elements inform the operator of the current state, 
rationale, and future state projections so that the operator does not have to make these 
connections themselves, which may decrease their workload (Chen et al. 2011).  

Consequently, the effect of increased agent transparency on workload is unclear. Thus 
workload will be an important factor in the current experiment. We hypothesize that 
workload will decrease with increased transparency level because the design of the 
information supporting agent transparency in the system is designed to lower operator 
cognitive load. However, we also note that increased workload is a valid concern when 
additional information is added to an interface and increased workload may decrease both 
trust in the system and perceived usability. 
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1.4 Usability 

The International Organization for Standardization (ISO) defined usability as a user’s 
effectiveness, efficiency, and satisfaction in a specific task context (Bevan 2009; ISO 
2008). Previous research has found that greater usability was associated with more trust in 
automated systems (Wang et al. 2009) and calibrated trust while using automated decision 
aides (McBride and Morgan 2010). Further, displays that present information to support 
agent transparency may require integrating more and potentially complex information to 
operators, thus usability is a paramount concern when designing transparent autonomous 
systems (Beven 2009; Scholtz and Consolvo 2004). We hypothesize that usability scores 
will increase with transparency level because of` the previously hypothesized decrease in 
workload and increases in trust. In other words, the system will be perceived as more usable 
as it provides more information supporting of transparency to the operator. This hypothesis 
is also based on previous work indicating that workload decreases the effectiveness of a 
system (Beven and Macleod 1994). 

1.5 Individual Differences 

The effects of individual differences (IDs) on operator decision-making performance, 
workload, trust, and usability were evaluated in the present study. Several key individual 
differences were identified as relevant: perceived attentional control (PAC), spatial ability, 
working memory capacity (WMC), and gaming experience (GE). 

1.5.1 Perceived Attentional Control 

Attentional control refers to an individual’s ability to self-regulate and enact effortful 
control over their attentional processes (Derryberry and Reed 2002). This ability assists 
individuals in determining which stimuli in the environment to direct their attention toward 
and assists in switching their attention between tasks (Astle and Scerif 2009). PAC is an 
individual’s self-report of their ability to direct effortful control over their attentional 
processes (Derryberry and Reed 2002). Individual differences in PAC have been evaluated 
in previous studies involving supervisory control of multiple UxVs and may be an 
important predictor of performance in human-robotic interactions robot tasks (Chen and 
Barnes 2012b; Wright et al. 2013). Therefore, we hypothesize that individuals with 
increased PAC will be better able to calibrate their trust in the system by more quickly 
being able to determine issues with the IA. These individuals may also rate lower workload 
across all transparency levels. 

1.5.2 Spatial Ability 

Spatial abilities are another potentially important variable to consider explaining 
performance differences in supervisory multi-UxV systems. Previous research has found 
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that individuals with greater spatial abilities not only made fewer performance errors on a 
robotic navigation task (Lathan and Tracey 2002) but also outperformed less spatially 
skilled individuals in threat detection tasks conducted while monitoring robotic 
performance (Chen and Barnes 2012a; Chen et al. 2008), in vehicle identification tasks 
(Fincannon et al. 2013), and during both direct line of sight and teleoperation navigation 
performance (Long 2011). We hypothesize that individuals with greater spatial abilities 
will specifically exhibit greater performance when given less information where spatial 
relations among assets is more valuable and may also exhibit lower workload during the 
experiment. 

1.5.3 Working Memory Capacity 

Greater WMC has been found to be associated with greater multitasking ability. High 
scores on the Operation Span (OSPAN), a measure of WMC, have been linked to greater 
performance on UxV tasks (de Visser et al. 2010). Further, when the demand for mental 
resources such as working memory capacity are overloaded, individuals must expend more 
effort and performance will decrease (Wickens 2008). We therefore hypothesize that 
individuals with greater WMC will self-report lower workload during the experiment and 
will have faster response times as a result of being able to more quickly and efficiently 
process the presented information. 

1.5.4 Action Gaming Experience 

Greater GE has previously been shown to increase accuracy and SA during multitasking 
situations (Chen and Barnes 2012b; Cummings et al. 2010). In fact, playing video games 
may assist individuals to develop strategies that can successfully be used to increase 
performance on other tasks. For example one study found that experienced action video 
game players (AVGPs), i.e., individuals who play action games such as first person 
shooters, outperformed nongamers in a change blindness task because they employed a 
broad search strategy. The nongamers on the other hand employed a more elaborate and 
costly strategy that cost additional time (Clark et al. 2011). We hypothesize, therefore, that 
action GE will be associated with faster reaction times throughout the experiment.  

1.6 Current Study 

In the current study we simulated a heterogeneous multi-UxV planning task where 
participants took on the role of an UxV operator whose job was to supervise vehicles and 
direct them to carry out missions while managing the commander’s intent plus vehicle and 
environmental constraints. Operators managed a team of 6 vehicles—2 unmanned aerial 
vehicles (UAVs), 2 unmanned ground vehicles (UGVs), and 2 unmanned surface vehicles 
(USVs)—to complete 3 blocks of 8 experimental events, 1 for each transparency level, for 
24 discrete missions, using a simulator loosely based on the US Air Force Research 
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Laboratory’s (AFRL’s) FUSION system. The simulator uses a similar approach as the 
Playbook system developed by Miller et al. (2004) to engage the participant (called the 
operator) in mixed-initiative decision making. In the current experiment the simulator 
provides the operator with a particular play to call; however, it seeks input from the human 
by suggesting 2 similar plans (Plans A and B) to achieve the play. Each mission began with 
participants monitoring UxV vehicle positions and status. During this time they would 
receive 4 messages, each containing one of the following: patrol reports, updates on vehicle 
status, or commander intent messages. Two of the messages were relevant to the operators’ 
task while 2 were irrelevant; messages were presented in a randomized order. Afterward, 
participants were given an objective to complete (e.g., locate a missing person or defuse an 
improvised explosive device (IED) along with 2 plans (Plans A and B) that may achieve 
that objective. The participants’ task was to use information given to them by the IA to 
choose the best plan to complete each mission.  

This experiment manipulated interface transparency level and either provided operators 
with a SAT Level 1 (basic plan information only), SAT Level 1+2 (basic plan information 
and reasoning), or SAT Level 1+2+3 (basic plan information, reasoning, and projections 
of uncertainty) interface. Our primary goal was to determine how increased information 
supporting of agent transparency based on the SAT model would affect operators’ trust in 
the IA, workload, and their perceived usability of the system. Our secondary goal was to 
determine how individual differences affected the relationship between transparency and 
trust, as well as workload and usability. Finally, we are also interested in trying to 
understand participants’ decision-making strategy and utilization of different elements of 
the interface to determine which parts of the display were useful to the participants. 

2. Method 

2.1 Participants 

Thirty-five participants, recruited using an online participant pool, completed the 
experiment, and 5 were removed from the study. Two participants were removed due to 
technical issues, 2 because they did not pass the evaluation, and 1 because of a failed color 
vision test. Overall, 30 young adults in the Orlando, FL, area (18 men and 12 women) 
between the ages of 18 and 29 (M = 21.23, SD = 2.33) participated in this study. Participants 
were compensated $15/hr for their participation. 
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2.2 Apparatus 

2.2.1 Simulator 

A customized simulator, based on the AFRL’s FUSION multi-UxV planning system 
(Spriggs et al. 2014), was created to support the current study. The simulator consisted of 
a standard desktop computer, one 60.96-cm (24-inch) monitor, one standard Windows 
keyboard, one standard 2-button mouse, 2 desktop speakers, and a customized software 
program. The simulator included several sections: a video window where participants 
watched UxV movements and received intelligence (Intel) messages, a mission assignment 
window where participants received a mission objective, and a decision window where 
participants received an asset capability tile to inform them of relevant information—
vehicle capabilities, mission synopsis, Intel, and both of the IAs plan suggestions (Plans A 
and B).  

Participants evaluated the 2 plans and selected the best plan based on their judgment. 
Additionally, participants were instructed to use 3 metrics to evaluate each plan: Speed, 
Coverage, and Capabilities. Speed was defined as how quickly each vehicle can arrive or 
carry out the mission. Coverage was defined as how well the vehicle can get “eyes on 
target” based on the type of sensors each vehicle carried. Finally, Capabilities was defined 
as the vehicle’s appropriateness for the mission. Each vehicle had a set of strengths and 
weaknesses (e.g., can travel long distances, stealthy, or weaponized) that could affect 
Capabilities.  

2.2.1.1 Simulator Video Window 

The simulator video window (Fig. 2) showed participants a base map, including each 
normal vehicle patrol route (interior road, perimeter, harbor, and sea lanes). The map was 
always displayed in the same orientation (north was always up). Locations of a garage and 
dock are denoted by labeled boxes. These locations house vehicles that are not currently 
assigned to the plan. UxVs were labeled using the middle letter of the appropriate vehicle 
acronym (A = UAV, G = UGV, S = USV) followed by a vehicle number (e.g., UAV1). 
Vehicle names remained constant during the experiment. Several smaller tiles were 
overlaid on the map, including a “play detail” tile (top left) that showed the play name and 
a visual representation of the current play, detailing active vehicle movement (colored to 
match the active play). In the video window, all vehicles began performing the “normal 
full coverage patrol base defense” play (always blue). An Intel history tile (bottom left) 
displayed previously acknowledged Intel. Messages from the base commander were 
prioritized and listed separately. Participants were given a scroll bar and could scroll if too 
much information was displayed in each box. A vehicle status tile (center right) identified 
which vehicles were in use (assigned to the active play), in reserve (unassigned to play), or 
out of service (grounded). Vehicles were displayed in one of 2 colors, the play’s color or 



 

9 

white (reserve or out of service). As participants watched the vehicles patrol the base, Intel 
messages would arrive (Fig. 3), which froze the simulation until they were acknowledged 
by clicking the Acknowledge box. 

 

Fig. 2 Simulator video window during opening video 

 

Fig. 3 Simulator video window with Intel message 

2.2.1.2 Simulator Mission Assignment Window 

The simulator mission assignment window (Fig. 4) was composed of an “alert” pop-up box 
that described the participants’ mission objective (e.g., “There is a ship out in the harbor 
near the North Sea Lane. A man has gone overboard. Send the best vehicle(s) to coordinate 
the search for the man.”) Participants then clicked on the “Accept Mission” box, which 
brought up the decision window.  
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Fig. 4 Simulator video window showing mission objective box 

2.2.1.3 Simulator Decision Window 

The simulator decision window (Fig. 5) displays the asset capabilities (top left), the mission 
objective (upper center left), the Intel messages (lower center left), the decision box 
(bottom left), an overview of Plan A (top right), and an overview of Plan B (bottom right). 

 

Fig. 5 Simulator decision window 

2.2.2 Eye Tracker 

The SMI (SensoMotoric Instruments; Berlin, Germany) Remote Eye-tracking Device  
(SMI RED) was used to collect ocular indices to measure both visual attention and 
workload. The SMI RED system uses an infrared camera-based tracking system and allows 
for noncontact operation. The SMI RED uses a camera mounted under the computer  
monitor to track both the pupil and corneal reflection in both eyes. Eye movements were 
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sampled at the rate of 60 Hz (each eye), which were logged in real time and synchronized 
with the simulator. 

2.2.3 Survey and Tests 

2.2.3.1 Demographics 

A demographics questionnaire (Appendix A) was administered at the beginning of the 
study. This survey included information on participants’ age, gender, education, computer 
experience, and GE. Participants rating of computer and GE was rated on a 6-point Likert-
type scale (never, rarely, every few months, monthly, weekly, or daily). Frequent video 
gamers were categorized as individuals who reported playing either weekly or daily 
whereas nongamers were individuals who selected any other choice.  

2.2.3.2 Color Vision Screening 

Participants were given a screening for color deficiencies prior to participation using 
Ishihara color plates. Nine PowerPoint slides were shown to participants and only 
individuals who correctly answered at least 8 out of 9 were included in the study. 

2.2.3.3 Trust Measures 

We measured trust in 2 different ways in the current study. First, we measured participants’ 
objective decision-making performance. Second, we measured participants’ self-reported 
perceived trust in the IA, which is subjective in nature, using a questionnaire (Appendix 
B). Objective decision-making performance was measured by participants’ reliance or 
rejection of the IA’s prioritization of Plan A. The IA always presented Plan A as its 
indicator of the best option, and participants’ were given a choice of accepting the IA’s 
recommendation of Plan A (indicating trust in the agent) or choosing the alternative option 
Plan B, which indicated distrust in the IA. Participants made their decision by selecting 
one of the plan buttons displayed on the interface (Fig. 5).  

Based on previous trust frameworks, an operator’s appropriate reliance on the agent called 
calibrated trust (Hancock et al. 2011; Lee and See 2004) or appropriate learned trust (Hoff 
and Bashir 2015), the participant exhibits appropriate trust when the participant chooses 
Plan A when the IA is correct, and Plan B when it is not; in other words, the ideal state, 
from a signal detection theory perspective, is when a participant would only make hits and 
correct rejections. However, the participant may over-rely on the system and thus misuse 
it. In these situations, the participant would demonstrate high trust, but that trust would be 
associated with degraded performance (such as a high false alarm rate). Finally, 
participants may not trust the system and disuse it, even when Plan A is correct. In this 
situation, trust would also correlate with degraded performance (such as a higher miss rate; 
Table 1). 
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Table 1 Operational definitions of automation usage decisions used in the current study 

Correct Plan Automation Operator Usage SDTa 
A A A Proper IA Use Hit 
B A B Correct IA rejection Correct rejection 
A A B IA disuse Miss 
B A A IA misuse False alarm 

a SDT = signal detection theory. 

Subjective trust was measured using the automation trust scale developed by Jian et al. 
(2000). However, this measure does not account for the types of automation suggested 
previously in the literature. For example, one seminal article (Parasuraman et al. 2000), 
proposed that each stage of information processing can be automated: 1) information 
acquisition (i.e., sensory processing), 2) information analysis (i.e., perception), 3) decision 
and action selection, and 4) action implementation (i.e., response selection). To this end, 
we combined the types of automation (Parasuraman et al. 2000) with the Jian et al. (2000) 
automation trust scale by asking each of the trust questions for each part of the information 
processing model. The current study, however, only manipulates the display of information 
already gathered (trust during information analysis) and performs decision and action 
selection. Consequently, we have only analyzed those scales and excluded information 
acquisition and action implementation from the current study. Each item was scored on a 
7-item Likert-type scale (1 = not at all; 7 = extremely).  

2.2.3.4 Response Time 

Response time is defined as the time from when the decision window first appeared to the 
moment when the participant clicked one of the plan decision buttons and was measured 
directly from the simulation.  

2.2.3.5 Workload Measures 

We measured both objective and subjective workload. Objective workload was measured 
using eye tracking measures (e.g., fixation duration and pupil diameter). Subjective 
workload was measured using the National Air and Space Administration Task Load Index 
(NASA-TLX) (Hart and Staveland 1988; see Appendix C), a self-report questionnaire. The 
NASA-TLX measures a total weighted workload score based on 6 subscales: mental, 
physical, and temporal demands, as well as effort exerted, self-performance evaluation, 
and frustration felt during the task. Participants rated these 6 subscales on a continuous 
scale from 0 to 100, where lower scores on the scale indicate low workload and higher 
scores represent higher workload from that factor. Next, participants completed 15 pairwise 
comparisons (each scale appears 5 times) between each of the scale dimensions (e.g., effort 
vs. performance). Participants were instructed to pick the one factor that contributed more 
to their sense of workload during the task. To determine each subscale’s weighting, the 
number of times each factor was chosen is divided by 15 (number of total comparisons). 
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Each subscale score is then multiplied by the weight to calculate the scale’s weighted score. 
For example, if the Mental Demand scale was rated in the middle of the scale as a score of 
50 and then chosen 5 of the 15 times during the pairwise comparisons, it would have a 
weighting of 0.33, which would be multiplied by its score of 50; thus, this factor would 
have a weighted score of 16.50.  

2.2.3.6 Eye Tracking Measures 

We measured 2 ocular indices of workload: fixation duration and pupil diameter. Both 
measures were captured only during the decision window to determine operator’s workload 
during the decision process while they were interacting with the 3 transparency conditions. 
Both indices were averaged over the duration of each decision for each transparency level 
condition. Fixation duration, measured in milliseconds, is the time between saccades, when 
the eye is relatively still, during which visual information is processed (Holmqvist and 
Nystrӧm 2011). Longer durations have been found to be associated with increased 
workload and cognitive processing (e.g., Yang et al. 2014). Pupil diameter, measured in 
millimeters, is the size of the pupil measured horizontally. Light levels were held constant 
throughout the experiment as changes in luminance can affect pupil size. Additionally, 
larger pupil diameters are associated with increased arousal and workload (Holmqvist  
et al. 2011).  

2.2.3.7 System Usability Scale 

The System Usability Scale (SUS) (Brooke 1996) is a 10-question scale designed to 
measure users’ overall feelings of usability (efficiency, efficacy, and satisfaction) with the 
interface. The SUS is scored on a 5-point Likert scale (1 = strongly disagree; 5 = strongly 
agree) with half of the scale reverse-coded (Appendix D).  

2.2.3.8 Attentional Control Survey 

The attentional control survey (Derryberry and Reed 2002) is a 21-item survey scored on 
a 4-point Likert-type scale (almost never, sometimes, often, or always) to measure focused, 
selective, and divided attentional control (Appendix E). 

2.2.3.9 Spatial Ability Measures 

We used 3 measures of spatial ability. The first test was the Cube Comparison Test 
(Ekström et al. 1976; see Appendix F). This test displays sets of cube pairs and participants 
must mentally rotate the cubes to determine if they are the same cube from different 
orientations or different cubes. Second, the Spatial Orientation Test (Appendix G), 
modeled after the Cardinal Direction Test (Gugerty and Brooks 2004), evaluates 
participants’ reorientation from an egocentric view. Participants view both a third-person 
view of a plane as well as a first-person view of a building. Participants have to determine 
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the orientation of the building given the orientation of the plane. Finally, we used the Sense 
of Direction Scale (Kato and Takeuchi 2003; see Appendix H) which is a self-report  
17-item survey, measured on a Likert scale, that measures 2 facets of spatial ability, 
memory for usual spatial behavior, and direction of orientation. These surveys measured 2 
related but distinct components of spatial ability: spatial visualization (SpaV), which is the 
mental rotation of objects, and spatial orientation (SpaO), which is the reorientation of an 
environment (Hegarty and Waller 2004).  

2.2.3.10 Working Memory Capacity 

We used a version of the OSPAN task (Conway et al. 2005) to measure WMC. Participants 
alternated between solving a math problem in which they were instructed to press the space 
bar if the value of the equation equaled zero and being presented with a word. Sequence 
length was computer adaptive and increased with correct answers. After completing a 
sequence, participants were asked to recall the first letter of each word in the order of 
presentation. The average letters correct per sequence was used as our measure of WMC. 

2.2.3.11 Personal Involvement 

We created a novel measure of personal involvement (Appendix I) based on 
Zaichkowsky’s (1985) Involvement with Advertisements Measure, which consisted of 6 
questions scored on a 7-point Likert type scale (1 = not at all; 7 = extremely). Personal 
involvement in the task or task engagement was used as a potential covariate in the current 
study. 

2.2.3.12 Structured Strategy Interview 

To determine participant’s decision-making process after each block, we asked them to 
assign a numerical value to each element of the interface on a 7-point Likert-type scale  
(1 = not at all; 7 = extremely) and complete a series of qualitative, open-ended questions 
that asked them to describe the strategy they used during the previous block of trials 
(Appendix J). The experimenter took notes during the interview and completed a strategy 
sheet that was coded thematically.  

2.3 Experimental Design 

The experiment was a within-subjects design with 3 levels of IA transparency (SAT Level 
1, SAT Level 1+2, and SAT Level 1+2+3) based on the SAT model (Chen et al. 2014). 
Transparency level was counterbalanced using a Latin square block design (Williams 
1949). Participants completed 3 separate blocks, each consisting of 8 mission decisions of 
a single transparency level. The IA was incorrect 3 times, yielding a reliability rate of 
62.5% based on Wickens and Dixon’s (2007) finding that a 70% reliability rate is the point 
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at which unreliable automation was worse than a lack of automation in terms of 
performance.  

2.3.1 Transparency SAT Level 1 

Transparency SAT Level 1 (Fig. 6) provided participants only with basic plan information. 
Participants were given the plan detail tile (top left), which displayed the play icon and 
play name, an informative bar at the bottom the screen that displayed a 1- to 2-sentence 
summary of the current plan, and the vehicle status tile (center right). Additionally, the map 
displayed the current status of the vehicles, their location and projected paths (represented 
as dashed lines), and areas of interest (e.g., targets, boats, and search areas). 

 

Fig. 6 Plan showing transparency SAT Level 1 condition 

2.3.2 Transparency SAT Level 1+2 

Transparency SAT Level 1+2 (Fig. 7) provided participants with all of the SAT Level 1 
content and information regarding the IA’s rationale. Participants were given the plan 
quality icon (sprocket); a text box describing factors that influenced the IA’s 
recommendation of Plan A—speed, coverage, capabilities, environment alerts; and the 
IA’s judgment of vehicle appropriateness to the mission. 
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Fig. 7 Plan showing transparency SAT Level 1+2 condition. Labels indicate the location of the 
sprocket, text table, and a potential environmental constraint. 

The sprocket had several parts, each displaying 2 types of information. First, the wedge 
size displayed the IA’s judgment of the importance of each plan’s evaluation metrics 
(larger wedge = higher importance). Second, each metric was colored either green (good) 
or yellow (average), based on the IA’s determination of likelihood of mission success. A 
text box, displaying a written description of the plan’s speed, coverage, or capability, was 
presented to participants underneath the sprocket. Speed was defined operationally as how 
quickly the vehicles can arrive to begin and complete the mission. Coverage was defined 
as the quality of sensor coverage provided during the mission. Capability is defined by 
specific strengths and weaknesses based on the specific equipment of each vehicle 
(displayed in the asset capability tile). Mission appropriateness of each vehicle was 
displayed to participants by manipulating vehicle icon size. In SAT Level 1+2, vehicle 
icons could be either smaller or larger. If larger, it was rated as most appropriate for the 
mission. Finally, environmental constraints that the IA used to consider its plan rationale 
were displayed on the map using a unique icon.  

2.3.3 Transparency SAT Level 1+2+3 

Transparency SAT Level 1+2+3 (Fig. 8) provided participants with all of the SAT Level 
1+2 content and added projections of uncertainty to the interface. Three different types of 
projections of uncertainty were provided though the interface: 1) plan metric uncertainty 
(speed, coverage, and capabilities), shown as a transparent sprocket wedge and a bulleted 
statement in the text table, 2) vehicle uncertainty, shown as a transparent vehicle icon, and 
3) route uncertainty, shown as a transparent vehicle route. Participants were not shown 
probabilities or likelihood comparisons; rather, just that the information was uncertain. 
Plan metric uncertainty was used to display a specific uncertainty about speed, coverage, 
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or capability. For example, in Fig. 8, speed is green, meaning this metric is well satisfied 
by this plan; however, it is also uncertain. The specific reason is listed in the text box, as 
the current environmental condition may slow vehicle A2 down, reducing speed. The 
vehicle was uncertain because this condition may cause the vehicle to become less suitable 
for the mission, and the route was uncertain because it may have variability do to this same 
environmental factor.  

 

Fig. 8 Plan showing transparency SAT Level 1+2+3 condition 

2.4 Procedure 

After participants completed the informed consent and were given a brief overview of the 
study, they completed a demographics questionnaire and a brief color-vision screening. 
Next, participants received experimenter-guided training that explained the tasks and 
knowledge needed to complete the study, including the interface. The training consisted of 
PowerPoint slides, 9 training missions (3 for each transparency level), and feedback 
performed using the simulator. The slides informed participants that the IA was not always 
100% accurate but was reliable. The training session lasted approximately 45 min. After 
each training block, participants completed a brief structured interview about the strategy 
they used. Following training, participants received 18 evaluation missions. During the 
evaluation, participants were required to select 12 or more missions correctly to move onto 
the experimental missions. The evaluation lasted approximately 40 min. Participants were 
given a 5-min break, after which the eye tracker was calibrated, a process that consisted of 
the participants following a cursor around the screen using their eyes. Once the eye tracker 
was calibrated, participants moved on to the experimental missions. 

Participants completed 3 blocks of experimental missions, one for each transparency level. 
Each mission was divided into 3 phases. The first phase consisted of participants viewing 
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a team of UxVs (UGVs, UAVs, and USVs) as they patrolled the base perimeter for 45 s at 
the beginning of each mission. During this base defense task, participants received 4 Intel 
messages from either different patrols or the base commander, 2 of which had relevant 
Intel for the upcoming mission. Intel order was randomized. When an Intel message 
appeared, the simulation would pause to allow the participants to read and acknowledge 
each one individually. One message appeared every 9 s during the simulation, and the 
mission briefing appeared 9 s after the final Intel message at 45 s. During phase 2, occurring 
after the 45-s observation task, participants received a mission briefing with a specific 
objective. Participants were required to read and acknowledge this briefing. After 
acknowledging the mission objective, the participant entered the final, decision phase of 
the mission. The participant was presented with the decision window (Fig. 5), and the 
intelligence agent recommended 2 plans: Plan A (the agent’s top choice) and Plan B (the 
agent’s back-up choice). Participants chose between the 2 plans, and the next mission 
would begin. Participants completed 3 blocks of 8 events (1 for each transparency level), 
which were counterbalanced. Plan A was correct 5 times in each 8-mission block. After 
each block, participants completed the NASA-TLX trust survey, the personal involvement 
survey, the verbal strategy questionnaire, and the SUS. The experimental session lasted 
approximately 90 min, and the entire experiment lasted approximately 4 h.  

3. Results 

We present the results from a series of analyses of variance (ANOVAs) and multivariate 
analyses of variance (MANOVAs) across all dependent variables of interest: objective 
trust, subjective trust, response time, workload, and system usability. We also conducted a 
series of mixed ANOVAs on all of the individual differences variables for both objective 
trust and workload data across all transparency levels. We report results for SpaO, SpaV, 
WMC, and action GE conducted by completing a median split on each individual 
difference factor. Mixed ANOVAs were conducted because we used both a within subjects 
variable (transparency information) and between subjects variables for individual 
differences metrics (e.g., spatial ability and working memory). 

All post hoc comparisons used a Bonferroni correction. Prior to all analyses, we screened 
for outliers and assumptions of multivariate normality with no significant deviations noted. 
We report effect sizes in terms of η2 instead of partial η2, as these can more easily be 
converted to R2 and compared across studies (Levine and Hullett 2002).  

3.1 Objective Trust 

We report 2 separate analyses of objective trust. First, we conducted a signal detection 
theory analysis using the raw hit and false alarm data. Second, we calculated the proportion 
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of IA proper usage rates and IA proper disuse rates to determine the effect of increasing 
transparency on calibrated trust.  

3.1.1 Signal Detection Analysis 

We used signal detection theory (SDT) to analyze participants’ sensitivity to the IA’s 
accuracy. We computed 2 indices of perceptual sensitivity from the hit (proper IA usage) 
and false alarm (IA misuses) data. The first index we used was the parametric index d′ and 
the second index is the nonparametric P (A), which is an estimate of the area under the 
Receiver Operating Characteristic curve described by a single hit and false alarm pair, also 
referred to as A′ (Pollack and Norman 1964). The main advantage of using A′ is that 
corrections do not have to be used in cases with hit rates of “1.0” or false alarm rates of 
“0” (e.g., Craig 1979; Davies and Parasuraman 1982); therefore, we report both metrics. 
For d′ in cases of hit rates of “1.0” or false alarm rates of “0” we employed a correction to 
the data described by Macmillan and Creelman (2004), subtracting half of a hit and adding 
half of a false alarm to the data. In addition to perceptual sensitivity, we also calculated a 
measure of participants’ response bias β. 

3.1.1.1 Perceptual sensitivity (d′) 

The results of a repeated-measures ANOVA on d′ showed a significant transparency level 
effect, F (2,58) = 11.39, p < 0.001, η2 = 0.28, where d′ scores linearly increased with 
transparency information (Fig. 9). The greatest d′ scores were found for transparency SAT 
Level 1+2+3 (M = 2.75, SD = 1.01), subsequently decreasing for SAT Level 1+2  
(M = 2.16 SD = 1.15) and SAT Level 1 (M = 1.55, SD = 1.05). Post hoc tests using 
Bonferroni alpha adjustments within SPSS software (referred hereafter as post hoc tests) 
indicated a significant difference between SAT Level 1 and SAT Level 1+2+3 (p < 0.001) 
and a marginal difference between SAT Level 1 and SAT Level 1+2 (p = 0.06).  

3.1.1.2 Perceptual sensitivity (A′) 

The results of a repeated-measures ANOVA on A′ showed a significant effect of 
transparency level, F (2,58) = 7.54, p = 0.001, η2 = 0.21. A′ scores linearly increased with 
transparency information. The greatest A′ scores were found for SAT Level 1+2+3 
(M = 0.92, SD = 0.07). Subsequently decreasing for transparency SAT Level 1+2  
(M = 0.87, SD = 0.14) and SAT Level 1 (M = 0.81, SD = 0.16). Post hoc tests indicated a 
significant difference between SAT Level 1 and SAT Level 1+2+3 (p = 0.002). Fig. 9 
shows both d′ and A′ across the 3 transparency levels. Means and standard error for both d′ 
and A′ are shown in Fig. 9, while means and standard deviations are shown in Table 2. 
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Fig. 9 Average d′ and A′ across transparency levels. Error bars indicate standard error of the mean 
(SEM). 

Table 2 Perceptual sensitivity and response bias data across transparency levels 

Dependent Variable Transparency M (SD) 95% CIa 

Perceptual sensitivity (d′) 
SAT Level 1 1.55 (1.05) [1.16; 1.94] 
SAT Level 1+2 2.16 (1.15) [1.73; 2.58] 
SAT Level 1+2+3 2.75 (1.01) [2.37; 3.13] 

Perceptual sensitivity (A′) 
SAT Level 1 0.81 (0.16) [0.75; 0.87] 
SAT Level 1+2 0.87 (0.14) [0.82; 0.92] 
SAT Level 1+2+3 0.92 (0.07) [0.90; 0.95] 

Response bias (β) 
SAT Level 1 –0.23 (0.89) [–0.10; 0.57] 
SAT Level 1+2 0.68 (1.10) [0.27; 1.09] 
SAT Level 1+2+3 0.06 (1.53) [–0.51; 0.63] 

a CI = confidence interval 

3.1.1.3 Response bias (β) 

Response bias was calculated using the likelihood ratio β. Results revealed no significant 
differences between participants’ response bias in SAT Level 1 (M = –0.23, SD = 0.89), 
SAT Level 1+2 (M = 0.68, SD = 1.10), or SAT Level 1+2+3 (M = 0.06, SD = 1.53),  
F (2,58) = 2.51, p = 0.090, η2 = 0.080. Overall, in our 3 transparency levels, participants 
were more likely to follow the IA’s recommendation than to reject it, which may be due to 
our reliability manipulation. Response bias and sensitivity measures are shown in Table 2.  

3.1.2 Proper IA Usage and Correct IA Rejection 

Proper IA use and correction rejection rates represent a proportion of the 8 possible cases 
during each block. A repeated-measures MANOVA on both proper IA use and correct IA 
rejection rates across each transparency level was used to reduce pairwise error rate since 
both measures were moderately correlated (r’s = 0.26 – 0.73), but not so strongly correlated 
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that warranted creating a composite measure. This analysis revealed a significant 
multivariate effect for transparency level using Wilks’ Lambda criteria, F (4, 21) = 7.15,  
p = 0.001, η2 = 0.58, Λ = 0.42. Since the multivariate effect was significant, we considered 
the univariate effects of each dependent variable separately. 

3.1.2.1 Proper IA Usage Rates 

Results for proper IA usage revealed a significant main effect of transparency level,  
F (2,58) = 12.33, p < 0.001, η2 = 0.30. The greatest rate of proper IA usage was found in 
SAT Level 1+2+3 (M = 89%, SD = 12.15%), followed by SAT Level 1+2 (M = 87.44%, 
SD = 12.60%), while SAT Level 1 had the lowest proper IA usage rate (M = 75.85%,  
SD = 15.29%). Post hoc comparisons indicated participants’ proper IA usage rates were 
significantly greater in SAT Level 1+2+3 (p < 0.001) and SAT Level 1+2 (p = 0.003) 
compared with SAT Level 1. There was no significant differences between proper IA usage 
rates between transparency SAT Level 1+2 and SAT Level 1+2+3 (p = 1.00).  

3.1.2.2 Correct IA Rejection Rates 

Results for correct IA rejection rates revealed a significant effect of transparency level,  
F (2,58) = 15.03, p < 0.001, η2 = 0.34. The highest correct rejection rates were found in 
SAT Level 1+2+3 (M = 80.66%, SD = 19.97%), followed by SAT Level 1+2 (M = 67.11%, 
SD = 17.75%), while SAT Level 1 had the lowest correct rejection rates (M = 54.50%,  
SD = 20%). Post hoc comparisons indicated that participants’ correct IA rejection rates 
were significantly greater in transparency SAT Level 1+2+3 than in SAT Level 1+2  
(p = 0.04) and SAT Level 1 (p < 0.001). Furthermore, correct IA rejection rates in 
transparency SAT Level 1+2 were significantly greater than SAT Level 1 (p = 0.013). 
Results for both proper IA use and correct IA rejection rates for each of the transparency 
levels are displayed in Fig. 10. 

 

Fig. 10 Proper IA usage and correct IA rejection scores across transparency levels. Error bars 
indicate SEM. 
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Our next analysis was conducted on individual differences among groups. Our individual 
differences analyses revealed marginally significant interaction effect for working memory 
with a small effect, F (2,56) = 3.07, p = 0.054, η2 = 0.01. The significant interaction effect 
was caused by performance differences in SAT Level 1 between low and high WMC 
groups (Fig. 11; Table 3). Individuals in the low WMC group had a lower proportion of 
correct rejections in SAT Level 1 (M = 0.47, SD = 0.18) than individuals with high WMC 
(M = 0.64, SD = 0.19; d = 0.92). While this pattern flipped in SAT Level 1+2 and SAT 
Level 1+2+3, these differences were small. Individuals in the low WMC group had a 
slightly greater proportion of correct rejections in SAT Level 1+2 (M = 0.68, SD = 0.18;  
d = 0.11) and SAT Level 1+2+3 (M = 0.82, SD = 0.19 d = 0.15) than individuals in the 
high WMC group SAT Level 1+2 (M = 0.66, SD = 0.18), SAT Level 1+2+3 (M = 0.79,  
SD = 0.22).  

 

Fig. 11 Interaction of WMC on correct rejections across transparency level. Error bars indicate 
SEM. 
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Table 3 Individual difference (ID) factors for proper IA use (PU), correct IA rejection (CR), and response time (RT) 

ID Factor 
SAT Level 1   SAT Level 1+2   SAT Level 1+2+3 

PU CR RT   PU CR RT   PU CR RT 

Low SpaV 0.75 (0.20) 0.48 (0.20) 36.75 (18.00)   0.87 (0.13) 0.71 (0.20) 38.58 (21.95)   0.89 (0.14) 0.79 (0.20) 37.76 (22.63) 
High SpaV 0.77 (0.09) 0.61 (0.19) 29.26 (15.04)   0.87 (0.13) 0.63 (0.14) 24.49 (11.42)   0.90 (0.11) 0.82 (0.20) 27.88 (12.06) 

Low SpaO 0.74 (0.19) 0.51 (0.24) 30.28 (17.11)   0.88 (0.12) 0.68 (0.18) 28.91 (17.88)   0.90 (0.12) 0.80 (0.21) 28.21 (17.84) 
High SpaO 0.78 (0.11) 0.58 (0.15) 35.73 (16.48)   0.87 (0.13) 0.66 (0.18) 34.16 (19.60)   0.88 (0.12) 0.81 (0.20) 37.43 (18.60) 

Low WMC 0.74 (0.19) 0.47 (0.18) 32.57 (16.20)   0.89 (0.13) 0.68 (0.18) 33.26 (19.93)   0.92 (0.11) 0.82 (0.19) 32.43 (19.84) 
High WMC 0.79 (0.09) 0.64 (0.19) 33.58 (18.06)   0.86 (0.12) 0.66 (0.18) 29.28 (17.29)   0.85 (0.13) 0.79 (0.22) 33.33 (17.41) 

Non-AVGP 0.78 (0.17) 0.55 (0.21) 36.87 (17.89)   0.87 (0.13) 0.69 (0.18) 30.32 (16.43)   0.88 (0.13) 0.76 (0.19) 34.75 (19.00) 
AVGP 0.73 (0.13) 0.54 (0.19) 27.20 (13.51)   0.88 (0.13) 0.64 (0.18) 33.35 (22.17)   0.90 (0.11) 0.87 (0.20) 29.92 (18.17) 

Note: PU = proper IA use; CR = correct IA rejection; RT = response time; SpaV = spatial visualization; SpaO = spatial orientation; WMC = working memory capacity; AVGP 
= action video game player. 
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3.2 Subjective Trust 

We conducted 2 separate between-subjects ANOVAs on both the information analysis and 
decision and action selection automation subscales. The need for between-subjects 
analyses stems from previous research, which has indicated that trust ratings can be biased 
based on prior experience with a system (e.g., Hoff and Bashir 2015), and thus we used the 
first block of trials that the participant experienced. Consequently, we analyzed trust for 
each subscale separately instead of creating a combined score.  

There were no significant differences across transparency levels for the information 
analysis subscale, F (2,27) = 2.14, p = 0.14, η2 = 0.14. Results did reveal a trend, where 
trust in the system’s ability to integrate and display information increased as transparency 
level increased. Trust was greater in SAT Level 1+2+3 (M = 5.83, SD = 0.63), subsequently 
decreasing in transparency SAT Level 1+2 (M = 5.51, SD = 0.73) and SAT Level 1  
(M = 5.19, SD = 0.70). Results for the “suggesting or making decisions” subscale were 
significant for transparency level, F (2,27) = 4.01, p = 0.03, η2 = 0.23. Trust in the system’s 
ability to suggest or make decisions increased as transparency level increased. Post hoc 
analysis revealed that trust was significantly greater in SAT Level 1+2+3 (M = 5.47,  
SD = 0.61) than SAT Level 1 (M = 4.63, SD = 0.88, p = 0.031). No significant differences 
were found between SAT Level 1+2 (M = 4.88, SD = 0.50) and SAT Level 1 (p = 1.0) or 
SAT Level 1+2+3 (p = 0.20), which are displayed in Table 4.  

Table 4 Means, SD, and confidence intervals (CIs) for trust subscales across transparency levels 

Dependent Variable Transparency M (SD) 95% CI 

Information display and analysis 
trust subscale 

SAT Level 1 5.19 (0.70) [4.69; 5.69] 

SAT Level 1+2 5.51 (0.73) [5.00; 6.03] 

SAT Level 1+2+3 5.83 (0.63) [5.37; 6.28] 

Decision action selection trust 
subscale 

SAT Level 1 4.63 (0.88) [4.00; 5.25] 

SAT Level 1+2 4.88 (0.50) [4.52; 5.24] 

SAT Level 1+2+3 5.47 (0.61) [5.03; 5.91] 

3.3 Response Time 

There were no significant difference in response time between all 3 transparency levels,  
F (2,58) = 0.38, p = 0.69, η2 = 0.02 (Table 5).  
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Table 5 PU, CR, and RT data across transparency level 

Dependent Variable Transparency M (SD) 95% CI 
 SAT Level 1 0.76 (0.15) [0.70; 0.82] 

Proper IA use rate SAT Level 1+2 0.87 (0.16) [0.83; 0.92] 
 SAT Level 1+2+3 0.89 (0.12) [0.84; 0.94] 
 SAT Level 1 0.55 (0.20) [0.47; 0.62] 

Correct IA rejection rate (%) SAT Level 1+2 0.67 (0.18) [0.60; 0.74] 
 SAT Level 1+2+3 0.81 (0.20) [0.73; 0.88] 
 SAT Level 1 33.00 (16.73) [26.76; 39.25] 

Response time (s) SAT Level 1+2 31.53 (18.63) [24.58; 38.50] 
 SAT Level 1+2+3 32.82 (18.51) [25.91; 39.73] 

 
ID analyses discovered a significant interaction effect for GE due to gamer differences in 
SAT Level 1 and SAT Level 1+2+3 (Fig. 12). AVGPs (M = 27.20, SD = 13.51) in SAT 
Level 1 had quicker response times than non-AVGPs (M = 36.87, SD = 17.89; d = 0.61). 
This pattern was also found in SAT Level 1+2+3 but to a lesser degree; the non-AVGPs 
(M = 34.75, SD = 19.00) had greater response times than AVGPs (M = 29.92, SD = 18.16; 
d = 0.26), F (2,56) = 5.74, p = .005, η2 = 0.17. 

 

Fig. 12 Interaction of GE on RT across transparency level. Error bars indicate SEM. 

3.4 Objective Workload 

We report the results from our eye tracking analysis having removed 5 participants from 
the analysis pairwise across all conditions due to missing data, n = 25. In terms of objective 
trust, we did not find any effects of transparency level on either, fixation duration (FD),  
F (2,48) = 0.84, p = 0.44, η2 = 0.03 or pupil diameter (PD), F (2,48) = 0.92, p = 0.91,  
η2 = 0.004. 
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We found an interaction effect of SpaV on FD. Individuals with low SpaV had longer FDs 
in SAT Level 1 (M = 236.49, SD = 43.83) and 1+2 (M = 250.84, SD = 57.27) than 
individuals in the high SpaV group for SAT Level 1 (M = 218.42, SD = 42.19; d = 0.42) 
and SAT Level 1+2 (M = 222.78, SD = 38.84; d = 0.57). Interestingly, this pattern changed 
in SAT Level 1+2+3. The low SpaV group had shorter FDs in SAT Level 1+2+3  
(M = 229.73, SD = 49.78) than those in the high SpaV group (M = 253.78, SD = 44.17;  
d = 0.51), F (2,46) = 6.19, p = 0.004, η2 = 0.20 (Fig. 13 and Table 6). 

 

Fig. 13 Interaction effect of spatial ability on FD across transparency level. Error bars indicate SEM. 

.
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Table 6. Mean and standard deviations for individual difference factors across transparency level for eye tracking variables 

ID Factor 
SAT Level 1   SAT Level 1+2   SAT Level 1+2+3 

FD PD   FD PD   FD PD 

Low SpaV 236.49 (43.83) 3.56 (0.52)   250.84 (57.27) 3.60 (0.51)   229.73 (49.78) 3.60 (0.67) 
High SpaV 218.42 (42.19) 3.77 (0.36)   222.73 (36.84) 3.76 (0.35)   253.78 (44.17) 3.75 (0.36) 

Low SpaO 223.39 (36.14) 3.47 (0.36)   233.15 (32.22) 3.53 (0.28)   235.32 (53.24) 3.50 (0.37) 
High SpaO 233.45 (52.03) 3.90 (0.46)   242.70 (67.20) 3.87 (0.54)   248.85 (41.03) 3.90 (0.53) 

Low WMC 216.46 (45.83) 3.68 (0.50)   229.37 (51.67) 3.71 (0.48)   231.98 (54.26) 3.68 (0.54) 
High WMC 244.85 (34.04) 3.63 (0.40)   249.32 (46.49) 3.63 (0.40)   255.23 (33.92) 3.70 (0.40) 

Non-AVGP 239.77 (38.00) 3.68 (0.50)   243.71 (47.79) 3.71 (0.49)   250.34 (47.91) 3.70 (0.55) 
AVGP 206.56 (45.63) 3.63 (0.36)   226.04 (53.81) 3.61 (0.36)   225.16 (45.71) 3.61 (0.33) 

Note: ID = individual difference, FD = average fixation duration, PD = average pupil diameter, SpaV = spatial visualization, SpaO = spatial orientation, WMC = working 
memory capacity, AVGP = action video game player. 
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We found a main effect of SpaO on PD. PD was larger for the high SpaO group (M = 3.89, 
SD = 0.17) than the low SpaO group (M = 3.50, SD = 0.03) across all transparency levels. 
The difference was larger in SAT Level 1 (d = 1.04) than SAT Level 1+2+3 (d = 0.96) or 
SAT Level 1+2 (d = 0.82), F (1,23) = 5.54, p = 0.027, η2 = 0.19 (Fig. 14 and Table 6). 

 

Fig. 14 Effect of spatial ability on PD across transparency level. Error bars indicate SEM. 

3.5 Subjective Workload 

We conducted a 6 (TLX subscale) × 3 (transparency level) repeated-measures MANOVA 
on the TLX subscales. The effect of the combined dependent variables was not significant 
using Wilks’ Lambda criteria, F (12,18) = 1.14, p = 0.39, η2 = 0.43, Λ = 0.57. In addition, 
no differences were found using the univariate ANOVAs among the individual subscales; 
therefore, we did not interpret these results. Fig. 15 shows each TLX subscale by 
transparency condition, and Table 7 displays means, standard deviations, and CIs across 
transparency levels for all subscales and global workload. 
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Fig. 15 Average weighted TLX subscale means across each transparency level. Higher numbers 
indicate greater workload, except for performance, where higher numbers indicate better perceived 
performance. Error bars are SEM. 

Table 7 Means, standard deviations, and 95% CIs for subjective workload data across transparency 
level 

Dependent 
Variable Transparency Level 

         SAT Level 1            SAT Level 1+2            SAT Level 1+2+3 
 M(SD)   95% CI M(SD)  95% CI M(SD)  95% CI 
 
Mental 

21.16 
(10.17) 

[17.25; 
24.95] 

20.78 
(9.46) 

[17.25; 
24.31] 

21.60 
(8.45) 

[18.45; 
24.76] 

       
 
Physical 

1.34 
(3.71) 

[–0.04; 
2.73] 

1.33 
(2.41) 

[0.23; 
2.03] 

0.76 
(1.38) 

[0.25; 
1.28] 

       
 
Temporal 

9.08 
(6.26) 

[6.74; 
11.42] 

9.39 
(6.57) 

[6.94; 
11.84] 

9.69 
(5.87) 

[7.50; 
11.88] 

       
 
Effort 

13.44 
(5.84) 

[10.74; 
15.57] 

13.16 
(6.46) 

[10.74; 
15.57] 

13.09 
(6.27) 

[10.74; 
15.43] 

       
 
Frustration 

5.12 
(6.63) 

[2.65; 
7.60] 

4.27 
(6.14) 

[1.97; 
6.56] 

3.61 
(5.69) 

[1.49; 
5.74] 

       
 
Performance 

9.37 
(6.93) 

[6.78; 
11.95] 

9.01 
(6.68) 

[6.52; 
11.51] 

8.90 
(7.14) 

[6.24; 
11.57] 

       
Total 
workload 

59.51 
(17.85) 

[52.85; 
66.18] 

57.73 
(18.25) 

[50.92; 
64.55] 

57.66 
(17.25) 

[51.22; 
64.10] 
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Because we did not find any statistically significant differences between conditions, we 
conducted an analysis by collapsing across the 3 transparency level conditions to determine 
if significant differences existed between the TLX subscales for the experimental task as a 
whole using an ANOVA. The analysis revealed significant differences among the 
individual TLX subscales, F (5,29) = 43.55, p < 0.001, η2 = 0.56. Mental demand  
(M = 21.17, SD = 8.65) was the greatest overall contributor of workload (all comparisons  
p < 0.001). In addition, the effort subscale (M = 13.23, SD = 5.20) was the next greatest 
contributor of workload, which was greater than physical workload (M = 1.08, SD = 2.39, 
p < 0.001) and frustration (M = 4.33, SD = 5.57, p < 0.001).  

3.6 Usability 

We conducted a repeated-measures ANOVA on system usability scale total scores. The 
analysis revealed a significant effect for transparency level, F (2,58) = 5.70, p = 0.006,  
η2 = 0.11. Post hoc comparisons indicated that participants found the system more usable 
in both transparency SAT Level 1+2+3 (M = 66.75, SD = 19.40, p = 0.02) and SAT Level 
1+2 (M = 66.42, SD = 18.61, p = 0.07) than in SAT Level 1 (M = 61.83, SD = 22.77). No 
significant differences were found between SAT Level 1+2 and SAT Level 1+2+3 
(p = 1.00) (Table 8). 

Table 8 Means, SD, and CIs for SUS data across transparency levels 

Dependent Variable Transparency M (SD) 95% CI 

SUS total score 

SAT Level 1 61.83 (20.77) [54.08; 69.59] 

SAT Level 1+2 66.42 (18.61) [59.47; 73.37] 

SAT Level 1+2+3 66.75 (19.40) [59.51; 74.00] 

3.7 Personal Involvement 

We conducted a repeated-measures ANOVA on personal involvement scores to determine 
if involvement varied across transparency levels. The analysis did not find any significant 
differences across transparency level, F (2,58) = 1.43, p = 0.247, η2 = 0.047 (Table 9).  

Table 9 Means, SD, and CIs for personal involvement data across transparency levels 

Dependent Variable Transparency M (SD) 95% CI 

Personal involvement 
score 

SAT Level 1 30.40 (5.14) 28.48; 32.32 

SAT Level 1+2 30.73 (4.74) 28.96; 32.50 

SAT Level 1+2+3 31.43 (4.64) 29.70; 33.16 
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3.8 Decision-making Strategy 

We divided these data into 2 separate analyses. Quantitative data were subjected to a series 
of ANOVAs, while the qualitative data derived from the structured interviews were coded 
into themes and analyzed descriptively.  

3.8.1 Quantitative Data 

We conducted a series of repeated-measures MANOVAs to determine if differences 
existed between the participant’s perceived usefulness of different display elements within 
each level during the experiment.  

3.8.1.1 SAT Level 1 information 

Participants received SAT Level 1 information in every block of the experiment. They 
received 1) the name of the current play (Play Name), 2) detailed maps of the plan to 
complete the play (Play Details), 3) color-coded plans to indicate which vehicles were 
included in the plan (Plan Colors), 4) the status of each vehicle (Vehicle Status), 5) a brief 
summary of each plan (Information Bar), and 6) an experimental aide designed to reduce 
participant workload by providing them the strengths and weaknesses of each UxV (asset 
capability tile). Therefore, we analyzed the results in a 6 (display elements) × 3 
(transparency level) MANOVA. The analysis did not reveal any differences between 
display element use rates of SAT Level 1 information between transparency levels using 
Wilks’ Lambda criteria, F (10,20) = 1.11, p = 0.39, η2 = 0.36, Λ = 0.64. However, we 
observed that the mean for the asset capability tile appeared to vary across transparency 
levels, and the MANOVA may have concealed differences for the use of the asset 
capability tile. Therefore, we conducted a separate univariate ANOVA for the asset 
capability tile to reveal any differences hidden by the MANOVA, and the analysis showed 
a significant difference, F (2,58) = 4.17, p = 0.20, η2 = 0.13. Therefore, we believe that the 
other nonsignificant findings masked the differences for the asset capability tile (Fig. 16). 
The asset capability tile was perceived as significantly more useful in transparency SAT 
Level 1 (M = 6.10; SD = 1.2; p = 0.006) than in transparency Levels 2 (M = 5.50;  
SD = 1.5) or 3 (M = 5.47; SD = 1.5; p = 0.25). 
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Fig. 16 Usefulness ratings across transparency level conditions specifically for Level 1 user interface 
elements 

In addition, usefulness ratings were assessed within each specific level using a repeated-
measures ANOVA to determine which specific display elements participants found most 
useful to completing their decisions. Within transparency SAT Level 1 specifically, a main 
effect of information type was found, F (5,145) = 19.65, p < 0.001, η2 = 0.40. The play 
name was, significantly, the least helpful piece of rationale information given to the 
participant by the system (M = 1.87, SD = 1.28, p < 0.001), while the asset capability tile 
was found to be the most helpful piece of rationale information given by the system in SAT 
Level 1 (M = 6.10, SD = 1.90, p < 0.001). The remaining display elements did not differ 
significantly from each other.  

3.8.1.2 SAT Level 2 information 

Participants received SAT Level 2 information only in 2 conditions (transparency Levels 
2 and 3; Fig. 7) of the experiment. Participants received 6 pieces of SAT Level 2 rationale 
information: 1) the size of the vehicle to indicate UxV capabilities (Vehicle Size);  
2) environmental overlays on the maps (e.g., wind, fog, roadway debris; icons on map 
[alerts]); 3) the sprocket, which was divided into overall as well as 4) Wedge Size and 5) 
Wedge Color, and 6) IA reasoning information provided in a table for each plan (Table 
Text). Therefore, we analyzed the results in a 6 (display elements) × 2 (transparency level) 
MANOVA. The analysis did not reveal any differences between information use rates of 
SAT Level 2 information between transparency levels using Wilks’ Lambda criteria,  
F (4,25) = 0.69, p = 0.61, η2 = 0.10, Λ = 0.91. A comparison of the means revealed no 
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significant difference between SAT Level 2 and SAT Level 3 and almost identical values 
between ratings of transparency SAT Level 2 and 3; therefore, SAT Level 2 information 
was used similarly across both transparency levels (Fig. 17).  

 

Fig. 17 Usefulness ratings across transparency level conditions specifically for SAT Level 2 user 
interface elements 

Additionally, usefulness ratings were assessed within each specific level, using repeated-
measures ANOVA, to determine which specific display elements participants found most 
useful to completing their decisions. Within transparency SAT Level 2 specifically, a main 
effect of information type was found, F (5,145 = 9.66, p < 0.001, η2 = 0.25. The sprocket 
(M = 5.96, SD = 1.29, p < 0.001) and the text table (M =5.75, SD = 1.53, p < 0.001) were 
perceived as the most useful display elements given to the participant by the system. Within 
the sprocket, the wedge color (M = 5.62, SD = 1.50) was seen as significantly more helpful 
than the wedge size (M = 5.28, SD = 1.44), t (29) = 2.28, p = 0.03, Cohen’s d = 0.23. The 
remaining display elements did not differ significantly from each other.  

3.8.1.3 SAT Level 3 information 

Participants received SAT Level 3 information only in the transparency SAT Level 3 block 
of the experiment and we were primarily concerned with the transparency of the sprocket 
and the text table (Fig. 8); therefore, we analyzed the results using a paired t-test. The 
analysis did not reveal any differences between the participants’ information use rates of 
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the sprocket displaying uncertainty compared with the table displaying uncertainty  
t (29) = 1.14, p = 0.27, Cohen’s d = –0.20, indicating that no differences exist between the 
usefulness of these pieces of uncertainty (Fig. 18). 

 

Fig. 18 Usefulness ratings across transparency level conditions specifically for SAT Level 3 user 
interface elements 

3.8.2 Qualitative Data: Differences between Training and Experiment 

We also used information gleaned from structured interviews to determine if there was a 
strategy change between training and the experimental sessions. During training, 
participants may use many strategies and through experience may change those strategies 
based on the feedback given. It was expected that during the experimental blocks 
participants would discontinue strategies that were problematic during training given that 
only those who do well on the evaluation phase of the experiment continue to this phase. 
We used the qualitative data to support this analysis by looking at the number of strategies 
and the change between strategies from training to experimental sessions. Answers to open-
ended questions on the strategy interview were grouped into strategies and analyzed by 
testing the number of strategies between training and experimental blocks across all 
transparency levels during the experiment. 
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3.8.2.1 SAT Level 1 Strategies 

A repeated-measures MANOVA was conducted to determine the differences between 
training and experiment on SAT Level 1 information, and no differences were found as a 
main effect, F (5,25) = 1.35, p = 0.28, η2 = 0.21, Λ = 0.78, or as an interaction between 
transparency level and session, F (10,110) = 1.00, p = 0.41, η2 = 0.08, Λ = 0.84. We 
reported partial eta squared as reported in SPSS for our MANOVA results η2 (Fig. 19).  

 

Fig. 19 Number of participants using specific strategies during both training and experiment for the 
transparency SAT Level 1 condition 

The qualitative data indicate that while participants perceived no differences in the 
usefulness between the different parts of the interface, they used that information in 
different ways. For SAT Level 1, participants tried to use the differences between the 2 
plans during training, while in the experimental block they used Intel much more as they 
progressed through training and into the experimental blocks.  

3.8.2.2 SAT Level 2 Strategies 

A repeated-measures MANOVA was conducted to determine the differences between 
training and experiment on SAT Level 2 information, and no differences were found as a 
main effect, F (4,25) = 1.12, p = 0.38, η2 = 0.15, Λ = 0.85, or as an interaction between 
transparency level and session, F (4,25) = 0.82, p = 0.41, η2 = 0.06, Λ = 0.94 (Fig. 20). 
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Fig. 20 Number of participants using specific strategies during both training and experiment for the 
transparency SAT Level 1+2 condition 

In SAT Level 2, during training, participants used the sprocket and tried to understand 
capabilities, while during experiment they used the Intel, compared the plans, and then 
used the sprocket to finalize their decision, while others only used the sprocket.  

3.8.2.3 SAT Level 3 Strategy 

A repeated-measures MANOVA was conducted to determine the differences between 
training and experiment on SAT Level 3 information, and no differences were found as a 
main effect, F (2, 28) = 1.56, p = 0.23, η2 = 0.10, Λ = 0.90 (Fig. 21).  
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Fig. 21 Number of participants using specific strategies during both training and experiment for the 
transparency SAT Level 1+2+3 condition 

The strategies used in SAT Level 3 were similar to the strategies used in SAT Level 2 
except many more people tried to compare the plans during training, while during the 
experiment they relied much more heavily on the sprocket and starting using the table due 
to the additional information that was provided. 
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4. Conclusions and Discussion  

The current study had several goals. The primary objective was to study the effect of 
transparency level on user trust and to determine any potential performance trade-offs that 
may occur with respect to response time or workload. Across all mission events, 
participants were assisted by an IA that presented them with 2 plans with which to achieve 
the mission objectives and satisfy commander’s intent. Participants had to weigh vehicle 
capabilities, locations, and Intel with the IA’s assessment of plan success, potential 
uncertainties, and recommendations to achieve mission success. The IA made optimal 
recommendations 62.50% of the time; failure to do so was due to information that had not 
yet been processed. Thus, the primary measure of trust was the participant’s automation 
usage decision to accept or reject the system’s recommendation of Plan A. Secondary goals 
of the study included an exploration of the effects of an operator’s perception of system 
usability and the implications of individual differences (spatial ability, WMC, and action 
GE) on trust, workload, and ratings of the utility of each display element used in the 
experiment.  

The objective trust data supported our hypothesis that increases in information to support 
operator transparency lead to greater IA with proper uses and correct IA rejections in Level 
1+2 and even more in Level 1+2+3, which means both disuse and misuse decisions 
decreased across transparency levels as well. The addition of reasoning information in 
Level 1+2 increased proper IA use by 11% and correct rejection rate by 12%. The addition 
of both reasoning and uncertainty information in Level 1+2+3 improved proper IA use by 
an additional 2% and correct rejection rate by an additional 14%. Taken together, the proper 
IA usage and correct IA rejection percentages indicate that objective trust calibration 
increased linearly as a function of transparency level, with Level 1+2+3 proper IA usage 
rate at 90% and correct IA rejection rate at 81%. This increase suggests that incorporating 
information regarding both reasoning and uncertainty into heterogeneous tactical decision 
making successfully allowed our participants to indicate a more accurate trust in the IA 
shown by more accurate performance when making tactical decisions. These results are 
consistent with Helldin et al.’s (2014) findings that information that supported increased 
transparency also increased task performance as well as with Finger and Bisantz’s (2002) 
findings that displaying uncertainty information can support operator decision making. 
This relationship between performance and agent transparency was also supported by our 
SDT analysis. Level 1+2+3 yielded participants with both the highest d′ and A′ values, 
indicating the greatest level of perceptual sensitivity and paralleling the findings of the 
objective trust data.  

Using automation usage decisions as an objective measure of trust, however, only partially 
gauges operators’ trust in the IA. Participants may not have trusted the system at all, 
disregarded the IAs recommendation, and manually solved each mission. This would 



 

39 

indicate that our analysis of our objective trust data was flawed, as overall system disuse 
should decrease when it becomes more transparent. Therefore, subjective trust measures 
are needed to provide further insight into the participants’ trust. Subjective trust results, 
using the modified Jian et al. (2000) scale, aligned with our objective trust findings; 
therefore, we reject that operators failed to trust the IA and that the more-parsimonious 
explanation that the increased transparency based on the SAT model increased operator 
trust in the agent. Results for the “integrating and displaying information” and the “decision 
and action selection automation” subscales provided evidence that our operators trusted the 
IA’s recommendation more when the system was more transparent. This result is consistent 
with the findings of Oduor and Wiebe (2008), in which transparency positively affected 
trust calibration, suggesting that trust in human-agent teams is an important factor in 
performance (Freedy et al. 2007). Further, we mention calibrated trust because we 
hypothesized that calibrated trust would be associated with both greater objective and 
subjective trust in the IA. Additionally, subjective trust subscale ratings were sensitive to 
our system reliability manipulation. We manipulated the reliability of the IA’s 
recommendation, but the information supporting agent transparency in the current system 
provided to the participants was accurate for each mission. Therefore, trust was greater for 
information analysis automation, which was accurate 100% of the time compared with 
decision and action selection, which was accurate only 62.5% of the time for all 
transparency levels. Taken together, these findings suggest that participants displayed 
appropriate trust calibration. 

The individual differences analyses failed to find significant individual differences 
between either of our spatial ability or perceived attention control measures with objective 
or subjective trust scores across transparency levels. Previous studies have found that 
differences in both perceived attentional control and spatial abilities were key to 
understanding differences in task performance while managing multi-robotic systems 
(Chen and Barnes 2012a, 2012b; Chen et al. 2008; Lathan and Tracey 2002). Therefore, 
we hypothesized that perceived attentional control and spatial abilities would be important 
factors in our task. However, our study differed in several key aspects from previous 
supervisory control studies, which may have lessened individuals’ use of attentional or 
spatial skills. Previous human-robot interaction studies have all used sensor feeds from 
cameras as a component of their performance or decision-making tasks. In these tasks, 
participants either had to use visual information to teleoperate an unmanned vehicle (Chen 
et al. 2008; Lathan and Tracey 2002) or complete a threat detection task while making 
route decisions for a team of robots (Chen and Barnes 2012b). Performance on our task 
required integrating information displayed by both the IA and Intel to determine if the IA 
was basing its decisions on a faulty premise or incomplete information. Further, our tasks 
did not specifically require manipulating objects or the robot’s location in space and the 
map always remained in the same orientation; thus, the operators’ spatial abilities were 
used less frequently than in the aforementioned teleoperation studies. 
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We also looked at another key individual difference, WMC, with regard to objective trust. 
We found that individuals with low WMC had worse performances in Levels 1 and 1+2+3 
while WMC did not significantly vary in Level 2. Participants were given only basic 
information in Level 1, and, to make accurate decisions, they had to process and synthesize 
the information given to them; therefore, presumably, individuals with higher WMC 
performed better at this task due to that capacity. Interestingly, we found a similar pattern 
for Level 1+2+3, indicating that while participants were shown uncertainty information, 
they also had to determine what the effects of uncertainty are within the context of each 
specific mission. Previous research has indicated that uncertainty information adds 
working memory load and, consequently, individuals with low WMC are more likely to 
rely on heuristics to resolve their memory load than individuals with higher WMC (Quayle 
and Ball 2000). 

Another potential effect of adding additional user interface elements to support agent 
transparency is that individuals stop using basic information for reasoning or uncertainty 
elements (i.e., sprocket or text table). The results of the analyses performed on strategy 
differences between transparency level conditions indicated that all Level 1 elements, 
except for the asset capability tile, were used similarly across transparency levels. The asset 
capability tile was not a specific user interface element but rather an experimental addition 
to prevent novice participants from having to memorize asset capabilities and sensor 
payload information; therefore, the finding that individuals rated the asset capability tile as 
more helpful in the Level 1 condition serves as a manipulation check. As the agent became 
more transparent, users did not have to do as much work to determine the correctness of 
the IA’s decisions, and thus the asset capability tile became less useful during Level 1+2 
and Level 1+2+3 conditions. The condition order was counterbalanced, so we can reject 
any potential confounds from participant usefulness ratings and experience using the asset 
capability tile information. We also found that participants rated Level 2 user interface 
elements as similarly helpful across both level 1+2 and Level 1+2+3 conditions. Overall, 
the sprocket and text table were rated as the most helpful pieces of Level 2 information. 
The ratings for Level 3 information found no significant differences between the 
uncertainty displayed in the sprocket or the text table. This finding was similar to that of 
the Level 2 information where the sprocket was also rated as more helpful than the text 
table. The structured strategy interviews revealed that, typically, participants primarily 
relied on the sprocket and used the table information as a secondary source of information. 
This finding is logical because the sprocket was a very salient element in the display that 
conveyed information about priority, reasoning, and potential uncertainties presented in 
the plan. 

Our analysis between different overall strategies used between training and experimental 
blocks indicated several differences as operators learned to complete the task. During 
training, individuals are brand new to the system and have not had much experience using 
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the interface. During the experimental blocks, they were much more experienced since 
participants had already gone through training as well as the evaluation blocks, indicating 
that the change from training to experiment denotes stopping strategies that may not be 
particular useful and increased use of strategies that participants found helpful. During the 
Level 1 condition, participants placed emphasis on comparing and contrasting the 
differences between plans and looking at the information bar. During the experimental 
missions, they found these strategies less useful and instead focused on both capability 
differences between the assets and using the Intel received during each mission. During the 
Level 1+2 condition, participants initially used vehicle capability, Intel, and text table; 
however, after training, participants placed a greater emphasis on the sprocket, comparing 
the differences between the plans using the sprocket with many participants only using the 
sprocket as their sole strategy. This same pattern was also found in Level 1+2+3. Overall, 
this finding indicates that participants spent less time manually checking each plan and 
instead relying more on the system displays (sprocket and text table) and using the Level 
1 information to confirm or double-check their trust in the system.  

With regard to our analyses of the response bias data, we did not find significant differences 
that would indicate a particular bias between the IA’s recommended and backup plan for 
all transparency levels. Overall, decisions were somewhat liberal, which was expected due 
to the greater percentage of Plan A scores. This finding further suggests that complacency 
did not appear to contribute to the participant’s decision in the current study. One reason 
for this finding may have been the lack of workload differences between transparency 
levels. Greater levels of workload may have forced a certain level of reliance on the system 
due to the cost of manually solving each decision. Previous studies have found significant 
workload differences between different levels of automation assistance (Wright et al. 
2013). Additionally, other domains found that increased workload can negatively affect a 
decision-making performance, causing operators to sacrifice performance rather than 
optimize performance (Cummings 2006). In the current experiment, complacency could 
have occurred during SAT Level 1 due to the decreased transparency of the system and the 
level of task-related information provided to the participants (Parasuraman et al. 1993). At 
SAT Level 1+2 and SAT Level 1+2+3, we hypothesized complacency could occur due to 
the increased amount of information in the display that may create higher mental demand 
(Inagaki and Itoh 2013). Therefore, the nonsignificant response bias findings indicate that 
operator responses were a function of the level of information provided by the system, 
rather than an indicator of workload. As previously stated, we failed to find any significant 
differences in workload across conditions measured objectively or subjectively.  

In addition, we also failed to find increased response time as a function of transparency 
level. Previous research has found speed accuracy trade-offs as well as an association 
between speed and workload indicative of additional processing requirements (Helldin  
et al. 2014). Our results indicated that participants’ perception of mental demand and effort 
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were consistently greater than other subscales across transparency levels, suggesting that 
the task primarily stressed mental demand and effort that is appropriate for the task 
supporting the validity of the subjective workload findings. Additionally, our analysis of 
the TLX data revealed an interesting potential trend. Frustration decreased as transparency 
information increased. This finding, along with our other findings, align well with the SUS 
findings, which indicated that participants’ perceived usability of the system increased as 
transparency information increased. Thus, usability could be an underlying factor in 
participants’ performance, trust, and workload. 

We further analyzed eye-tracking data (fixation duration and pupil diameter) as a measure 
of objective workload. Aligning with the TLX scores, we did not find a change in workload 
as we added transparency information. The goal of transparency information is to mitigate 
workload by offloading information synthesis to the IA and displaying that information to 
the operator in a meaningful way. These findings indicate that the benefits of transparency 
may not introduce potential costs for workload supporting this idea instead of increased 
costs for implementing transparency. 

While no significant differences in workload were found generally, we accessed the effects 
of our individual differences measures. In doing so we found an interesting dissociation 
between spatial abilities and our eye tracking measures. We found significant differences 
between high and low SpaV groups for fixation duration but not pupil diameter. This 
dissociation occurred between SpaO operators as well, with significant differences for 
pupil diameter but not fixation duration. Fixation duration has been linked to workload and 
stress as well as more effortful scene processing. Some studies have shown shorter fixation 
durations for higher workload conditions that lead to greater visual scanning (Van Orden,  
et al.  2001). Therefore, it appears participants with lower spatial abilities were under more 
stress than those with higher spatial abilities. Individuals with higher spatial abilities were 
able to focus on more critical parts of the interface while those with lower spatial 
visualization skills were forced to scan around the interface.  

Decreased pupil diameter has previously been found to be an indicator of fatigue 
(Holmqvist et al. 2011); thus, it is possible that individuals with lower spatial orientation 
skills became fatigued faster by the amount of information in the interface than those with 
greater spatial abilities. Increased pupil diameter, on the other hand, has also been 
associated with increased cognitive workload (Van Orden et al. 2001). This possibility is 
seemingly at odds with the previous findings, as both SpaV and SpaO are related abilities. 
Since individuals with higher SpaO are better able to integrate and process information 
from the environment and take different perspectives given a single egoentric viewpoint, 
we believe that those with higher spatial abilities tried to directly compare the maps among 
each other, while individuals with lower spatial abilities may not have relied on other 
information in the environment. This possible behavior may also explain the interaction in  
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SAT Level 1+2+3 as individuals with higher SpaV abiliites may have attempted to 
integrate the projections of uncertainty into the map to better understand its effects to the 
plan. 

4.1 Future Work 

In the current experiment we defined our SAT Level 3 manipulation as the display of 
uncertainty. While uncertainty is a key variable that affects how conclusions are made on 
projected information, after further consideration we believe that uncertainty may apply to 
each level of the SAT model, as it does not solely reflect the system’s future state. For 
example, sensor errors may make basic information uncertain, and uncertainties in SAT 
Level 2 may make the operator circumspect of the IA’s reasoning process. Additionally, 
both of these uncertainties can be separated from SAT Level 3 uncertainties about the IA’s 
projections of future states. Therefore, future research should investigate how 
incorporating uncertainty into each level of transparency could affect performance, trust, 
and workload. We have one such study planned using a more ecologically valid interface, 
the AFRL Fusion test bed; however, information used to support agent transparency may 
be somewhat contextually dependent, meaning each system needs to determine which 
display elements are best for that specific system.  

4.2 Conclusion 

Our findings are increasingly important to facilitate decision making between the human 
operator and complex automated systems. Since automation is a key part of future systems, 
operators will need to rely on advanced automation, such as IAs, to enhance mission 
effectiveness due to the increased level of information flow (Paas and Merriënboer 1994). 
We examined the level of information received from the IA needed to create an effective, 
transparency interface, specifically addressing 3 issues: performance, trust, and workload. 

Unlike Helldin et al. (2014), who found that increased transparency resulted in increased 
performance and trust calibration at the cost of greater workload and longer response time, 
our results support the addition of transparency information, loosely based on the SAT 
model (Chen et al. 2014). The addition of transparency information greatly improved 
decision-making accuracy and perceptual sensitivity without cost to speed or increased 
workload. These findings align well with our trust and usability data. Both trust subscales 
suggest that participants trusted the IA’s recommendation more when the system was more 
transparent. Similarly, SUS findings indicated that participants’ perceived usability of the 
system increased as transparency information increased.  
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Appendix A. Demographics  

                                                 
  This appendix appears in its original form, without editorial change. 
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Demographic Questionnaire 
 

Participant # _______    Age ______ Major ________________  Date 
___________  Gender ___ 
 
1. What is the highest level of education you have had? (Circle one only) 

a) Less than 4 yrs of college b) Completed 4 yrs of college  c) Other 
 
2. When did you use computers in your education? (Check all that apply) 

 Grade School  High School   College  
 Jr. High 

 
 Technical School 

 
 Did Not Use 

 
 
3. Where do you currently use a computer? (Check all that apply) 
 
 Home 
 Work 
 Library 
 Other_______ 
 Do Not Use 
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4. For each of the following questions, circle the response that best describes 
you. 

 
How often do you: 

Use a mouse? Daily Weekl
y 

Monthl
y 

Once 
every 
few 

months 

Rarely Never 

Use a joystick? Daily Weekl
y 

Monthl
y 

Once 
every 
few 

months 

Rarely Never 

Use a touch screen? Daily Weekl
y 

Monthl
y 

Once 
every 
few 

months 

Rarely Never 

Use icon-based 
programs/software? Daily Weekl

y 
Monthl

y 

Once 
every 
few 

months 

Rarely Never 

Use programs/software 
with pull-down menus? Daily Weekl

y 
Monthl

y 

Once 
every 
few 

months 

Rarely Never 

Use graphics/drawing 
features in software 
packages? 

Daily Weekl
y 

Monthl
y 

Once 
every 
few 

months 

Rarely Never 

Use E-Mail? Daily Weekl
y 

Monthl
y 

Once 
every 
few 

months 

Rarely Never 

Operate a radio controlled 
vehicle (car, boat, or 
plane)? 

Daily Weekl
y 

Monthl
y 

Once 
every 
few 

months 

Rarely Never 

Play computer/video 
games? Daily Weekl

y 
Monthl

y 

Once 
every 
few 

months 

Rarely Never 

 
5. Which type(s) of computer/video games do you most often play if you play 
at least once every few months?: 
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6. Which of the following best describes your expertise with computers? 
(Circle one only) 
 

a) Novice 
b) Good with one type of software package (such as word processing or 

slides) 
c) Good with several software packages 
d) Can program in one language and use several software packages 
e) Can program in several languages and use several software packages 

 
7. Are you in your good/ comfortable state of health physically?  YES  NO 

If NO, please briefly explain: 
 
8. How many hours of sleep did you get last night?   ______ hours 
 
9. Do you have normal color vision?      YES NO  
 
10. Do you have prior military service?      YES NO       
 

 If YES, how long?:  __________ years 
Please answer the following questions about how you play video games by 
circling a number on the provided scale, from 1 (strongly disagree) to 6 
(strongly agree). 
 
  Strongly 

Disagree     Strongly 
Agree 

11. I can always manage to 
solve difficult problems 
within a video game if I 
try hard enough. 

1 2 3 4 5 6 

12. In a video game, if 
someone opposes me, I 
can find the means and 
ways to get what I want. 

1 2 3 4 5 6 

13. It is easy for me to stick to 
my plans and accomplish 
my goals in a video game. 

1 2 3 4 5 6 

14. I am confident that I could 
deal efficiently with 
unexpected events in a 
video game. 

1 2 3 4 5 6 

15. Thanks to my 
resourcefulness, I know 
how to handle unforeseen 
situations in a video 
game. 

1 2 3 4 5 6 
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16. I can solve most problems 
in a video game if I invest 
the necessary effort. 

1 2 3 4 5 6 

17. I can remain calm when 
facing difficulties in a 
video game because I can 
rely on my coping 
abilities. 

1 2 3 4 5 6 

18. When I am confronted 
with a problem in a video 
game, I can usually find 
several solutions. 

1 2 3 4 5 6 

19. If I am in trouble in a video 
game, I can usually think 
of a solution. 

1 2 3 4 5 6 

20. I can usually handle 
whatever comes my way 
in a video game. 

1 2 3 4 5 6 

 
Please answer the following questions about how you feel about automation by 
circling number on the provided scale, from 1 (strongly disagree) to 5 (strongly 
agree). 
 
 strongly 

disagree 
   strongly 

agree 
1. I usually trust automation 

until there is a reason not 
to. 

1 2 3 4 5 

2. For the most part, I 
DISTRUST automation. 1 2 3 4 5 

3. In general, I would rely on 
automation to assist me. 1 2 3 4 5 

4. My tendency to trust 
automation is high. 1 2 3 4 5 

5. It is easy for me to trust 
automation to do its job. 1 2 3 4 5 

6. I am likely to trust 
automation even when I 
have little knowledge 
about it. 

1 2 3 4 5 
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Appendix B. Trust Scale  

                                                 
  This appendix appears in its original form, without editorial change. 
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Trust Survey 
 
For each of the following items and situations, circle the number which best 
describes your feeling or your impression based on the system you just used. For 
each item, consider the following situations: 
 

• A: When the system is collecting and/or highlighting/filtering information. 
• B: When the system is integrating information, generating predictive 

displays, and/or presenting its analysis. 
• C: When the system is making decisions and/or selecting actions. 
• D: When the system is executing actions. 

 
1. The system is deceptive when… 

not at all   
neutral  extremely 

A: Gathering or Filtering 
Information 1 2 3 4 5 6 7 

B: Integrating and Displaying 
Analyzed Information 1 2 3 4 5 6 7 

C: Suggesting or Making Decisions 1 2 3 4 5 6 7 
D: Executing Actions 1 2 3 4 5 6 7 

 
2. The system behaves in an underhanded manner when… 

not at all   
neutral  extremely 

A: Gathering or Filtering 
Information 1 2 3 4 5 6 7 

B: Integrating and Displaying 
Analyzed Information 1 2 3 4 5 6 7 

C: Suggesting or Making Decisions 1 2 3 4 5 6 7 
D: Executing Actions 1 2 3 4 5 6 7 

 
3. I am suspicious of the system's intent, action, or outputs when… 

not at all   
neutral  extremely 

A: Gathering or Filtering 
Information 1 2 3 4 5 6 7 

B: Integrating and Displaying 
Analyzed Information 1 2 3 4 5 6 7 

C: Suggesting or Making Decisions 1 2 3 4 5 6 7 
D: Executing Actions 1 2 3 4 5 6 7 
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4. I am wary of the system when… 
not at all   
neutral               extremely 

A: Gathering or Filtering 
Information 1 2 3 4 5 6 7 

B: Integrating and Displaying 
Analyzed Information 1 2 3 4 5 6 7 

C: Suggesting or Making Decisions 1 2 3 4 5 6 7 
D: Executing Actions 1 2 3 4 5 6 7 

 
5. The system's actions will have a harmful or injurious outcome when… 

not at all   
neutral               extremely 

A: Gathering or Filtering 
Information 1 2 3 4 5 6 7 

B: Integrating and Displaying 
Analyzed Information 1 2 3 4 5 6 7 

C: Suggesting or Making Decisions 1 2 3 4 5 6 7 
D: Executing Actions 1 2 3 4 5 6 7 

 
6. I am confident in the system when… 

not at all   
neutral  extremely 

A: Gathering or Filtering 
Information 1 2 3 4 5 6 7 

B: Integrating and Displaying 
Analyzed Information 1 2 3 4 5 6 7 

C: Suggesting or Making Decisions 1 2 3 4 5 6 7 
D: Executing Actions 1 2 3 4 5 6 7 

 
7. The system provides security when… 

not at all   
neutral  extremely 

A: Gathering or Filtering 
Information 1 2 3 4 5 6 7 

B: Integrating and Displaying 
Analyzed Information 1 2 3 4 5 6 7 

C: Suggesting or Making Decisions 1 2 3 4 5 6 7 
D: Executing Actions 1 2 3 4 5 6 7 

 
8. The system has integrity when… 

not at all   
neutral  extremely 

A: Gathering or Filtering 
Information 1 2 3 4 5 6 7 
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B: Integrating and Displaying 
Analyzed Information 1 2 3 4 5 6 7 

C: Suggesting or Making Decisions 1 2 3 4 5 6 7 
D: Executing Actions 1 2 3 4 5 6 7 

 
9. The system is dependable when… 

not at all   
neutral  extremely 

A: Gathering or Filtering 
Information 1 2 3 4 5 6 7 

B: Integrating and Displaying 
Analyzed Information 1 2 3 4 5 6 7 

C: Suggesting or Making Decisions 1 2 3 4 5 6 7 
D: Executing Actions 1 2 3 4 5 6 7 

 
10. The system is reliable when… 

not at all   
neutral  extremely 

A: Gathering or Filtering 
Information 1 2 3 4 5 6 7 

B: Integrating and Displaying 
Analyzed Information 1 2 3 4 5 6 7 

C: Suggesting or Making Decisions 1 2 3 4 5 6 7 
D: Executing Actions 1 2 3 4 5 6 7 

 
11. I can trust the system when… 

not at all   
neutral  extremely 

A: Gathering or Filtering 
Information 1 2 3 4 5 6 7 

B: Integrating and Displaying 
Analyzed Information 1 2 3 4 5 6 7 

C: Suggesting or Making Decisions 1 2 3 4 5 6 7 
D: Executing Actions 1 2 3 4 5 6 7 

 
12. I am familiar with the system when… 

not at all   
neutral  extremely 

A: Gathering or Filtering 
Information 1 2 3 4 5 6 7 

B: Integrating and Displaying 
Analyzed Information 1 2 3 4 5 6 7 

C: Suggesting or Making Decisions 1 2 3 4 5 6 7 
D: Executing Actions 1 2 3 4 5 6 7 
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13. The system is predictable when... 
not at all   
neutral  extremely 

A: Gathering or Filtering 
Information 1 2 3 4 5 6 7 

B: Integrating and Displaying 
Analyzed Information 1 2 3 4 5 6 7 

C: Suggesting or Making Decisions 1 2 3 4 5 6 7 
D: Executing Actions 1 2 3 4 5 6 7 

 
14. The system meets the needs of the mission when... 

not at all   
neutral  extremely 

A: Gathering or Filtering 
Information 1 2 3 4 5 6 7 

B: Integrating and Displaying 
Analyzed Information 1 2 3 4 5 6 7 

C: Suggesting or Making Decisions 1 2 3 4 5 6 7 
D: Executing Actions 1 2 3 4 5 6 7 

 
15. The system provides appropriate information when... 

not at all   
neutral  extremely 

A: Gathering or Filtering 
Information 1 2 3 4 5 6 7 

B: Integrating and Displaying 
Analyzed Information 1 2 3 4 5 6 7 

C: Suggesting or Making Decisions 1 2 3 4 5 6 7 
D: Executing Actions 1 2 3 4 5 6 7 

 
16. The system malfunctions when... 

not at all   
neutral  extremely 

A: Gathering or Filtering 
Information 1 2 3 4 5 6 7 

B: Integrating and Displaying 
Analyzed Information 1 2 3 4 5 6 7 

C: Suggesting or Making Decisions 1 2 3 4 5 6 7 
D: Executing Actions 1 2 3 4 5 6 7 
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Now imagine that you are employed as an unmanned vehicle operator to complete 
missions. Reflecting on the experience with the system you just used, please rate 
the extent to which you agree with each of these items by circling a value from 1 
(strongly disagree) to 7 (strongly agree), where 4 is neutral. 
 
 Strongly 

Disagree   Neutral   Strongly 
Agree 

17. Using the system 
would improve my 
job performance. 

1 2 3 4 5 6 7 

18. Using the system 
would make it easier 
to do my job. 

1 2 3 4 5 6 7 

19. I would find the 
system useful in my 
job. 

1 2 3 4 5 6 7 

20. Learning to 
operate the system is 
easy for me. 

1 2 3 4 5 6 7 

21. It is easy for me 
to become skillful at 
using the system. 

1 2 3 4 5 6 7 

22. I find the system 
easy to use. 1 2 3 4 5 6 7 

23. I intend to use 
this system for my 
job. 

1 2 3 4 5 6 7 
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Appendix C. National Air and Space Administration Task Load Index  
(NASA-TLX)  

                                                 
  This appendix appears in its original form, without editorial change. 
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NASA-TLX Questionnaire 
 

Please rate your overall impression of demands imposed on you during the 
exercise. 
 
1. Mental Demand: How much mental and perceptual activity was required (e.g., 
thinking, looking, searching, etc.)? Was the task easy or demanding, simple or 
complex, exacting or forgiving? 

 
LOW |---|---|---|---|---|---|---|---|---| HIGH 

1   2   3   4   5   6   7   8   9  10 
 

2. Physical Demand: How much physical activity was required (e.g., pushing, 
pulling, turning, controlling, activating, etc.)? Was the task easy or demanding, 
slow or brisk, slack or strenuous, restful or laborious? 
 

LOW |---|---|---|---|---|---|---|---|---| HIGH 
1   2   3   4   5   6   7   8   9  10 

 
3. Temporal Demand: How much time pressure did you feel due to the rate or 
pace at which the task or task elements occurred? Was the pace slow and leisurely 
or rapid and frantic? 

 
LOW |---|---|---|---|---|---|---|---|---| HIGH 

1   2   3   4   5  6   7   8   9  10 
 

4. Level of Effort: How hard did you have to work (mentally and physically) to 
accomplish your level of performance? 

 
LOW |---|---|---|---|---|---|---|---|---| HIGH 

1   2   3   4   5  6   7   8   9  10 
 

5. Level of Frustration: How insecure, discouraged, irritated, stressed and 
annoyed versus secure, gratified, content, relaxed and complacent did you feel 
during the task? 

 
LOW |---|---|---|---|---|---|---|---|---| HIGH 

1   2   3   4   5  6   7   8   9  10 
 

6. Performance: How successful do you think you were in accomplishing the 
goals of the task set by the experimenter (or yourself)? How satisfied were you 
with your performance in accomplishing these goals? 

 
LOW |---|---|---|---|---|---|---|---|---| HIGH 

1   2   3   4   5  6   7   8   9  10 
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Pairwise Comparison of Factors 
Select the member of each pair that provided the most significant source of 
workload variation in these tasks. 

Physical Demand vs. Mental Demand 
 

Temporal Demand vs. Mental Demand 
 

Performance vs. Mental Demand 
 

Frustration vs. Mental Demand 
 

Effort vs. Mental Demand 
 

Temporal Demand vs. Physical Demand 
 

Performance vs. Physical Demand 
 

Frustration vs. Physical Demand 
 

Effort vs. Physical Demand 
 

Temporal Demand vs. Performance 
 

Temporal Demand vs. Frustration 
 

Temporal Demand vs. Effort 
 

Performance vs. Frustration 
 

Performance vs. Effort 
 

Effort vs. Frustration 
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Appendix D. System Usability Scale  

                                                 
  This appendix appears in its original form, without editorial change. 
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System Usability Scale  
 

Please answer the following questions about the system you just used by circling 
a number on the provided response scale, from 1 (strongly disagree) to 5 
(strongly agree). 
 
   Strongly 

Disagree    Strongly 
Agree 

1. I think that I would like to use 
this system frequently.  1 2 3 4 5 

2. I found the system unnecessarily 
complex. 1 2 3 4 5 

3. I thought the system was easy to 
use. 1 2 3 4 5 

4. I think that I would need the 
support of a technical person to be 
able to use this system. 

1 2 3 4 5 

5. I found the various functions in 
this system were well integrated. 1 2 3 4 5 

6. I thought there was too much 
inconsistency in this system. 1 2 3 4 5 

7. I would imagine that most people 
would learn to use this system very 
quickly. 

1 2 3 4 5 

8. I found the system very awkward 
to use.  1 2 3 4 5 

9. I felt very confident using the 
system. 1 2 3 4 5 

10. I needed to learn a lot of things 
before I could get going with this 
system. 

1 2 3 4 5 
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Appendix E. Attentional Control Scale 

                                                 
  This appendix appears in its original form, without editorial change. 
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Attentional Control Survey 
For each of the following questions, circle the response that best describes you. 
It is very hard for me to concentrate on a 
difficult task when there are noises around. 

Almost 
Never Sometimes Often Always 

When I need to concentrate and solve a 
problem, I have trouble focusing my 
attention. 

Almost 
Never Sometimes Often Always 

When I am working hard on something, I 
still get distracted by events around me. 

Almost 
Never Sometimes Often Always 

My concentration is good even if there is 
music in the room around me. 

Almost 
Never Sometimes Often Always 

When concentrating, I can focus my attention 
so that I become unaware of what’s going on 
in the room around me. 

Almost 
Never Sometimes Often Always 

When I am reading or studying, I am easily 
distracted if there are people talking in the 
same room. 

Almost 
Never Sometimes Often Always 

When trying to focus my attention on 
something, I have difficulty blocking out 
distracting thoughts. 

Almost 
Never Sometimes Often Always 

I have a hard time concentrating when I’m 
excited about something. 

Almost 
Never Sometimes Often Always 

When concentrating, I ignore feelings of 
hunger or thirst. 

Almost 
Never Sometimes Often Always 

I can quickly switch from one task to 
another. 

Almost 
Never Sometimes Often Always 

It takes me a while to get really involved in a 
new task.  

Almost 
Never Sometimes Often Always 

It is difficult for me to coordinate my 
attention between the listening and writing 
required when taking notes during lectures. 

Almost 
Never Sometimes Often Always 

I can become interested in a new topic very 
quickly when I need to. 

Almost 
Never Sometimes Often Always 

It is easy for me to read or write while I’m 
also talking on the phone. 
 

Almost 
Never Sometimes Often Always 

I have trouble carrying on two conversations 
at once. 

Almost 
Never Sometimes Often Always 

I have a hard time coming up with new ideas 
quickly. 

Almost 
Never Sometimes Often Always 

After being interrupted or distracted, I can 
easily shift my attention back to what I was 
doing before. 

Almost 
Never Sometimes Often Always 

When a distracting thought comes to mind, it 
is easy for me to shift my attention away 
from it. 

Almost 
Never Sometimes Often Always 
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It is easy for me to alternate between two 
different tasks. 

Almost 
Never Sometimes Often Always 

It is hard for me to break from one way of 
thinking about something and look at it from 
another point of view. 

Almost 
Never Sometimes Often Always 

 



 

72 
 

INTENTIONALLY LEFT BLANK. 



 

73 
 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix F. Cube Comparison Test  

                                                 
  This appendix appears in its original form, without editorial change. 
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Cube Comparisons Test Participant # ____ Date __ _ 

CUBE COMPARISONS T~ST -- S-2 (Rev.) 

Wooden b1ocks such as children play with ~re often cubical w1th a different 
1eccer, number, or symbo1 on each ot the sLx fa c es (~op, bo~com, fou~ sLdes). 
Each problem i.n t.his tesc COft~:d.sts of t.h·awio~(l; of pairs of cubes or block& of 
thi.e k:lnd. Remember, there is a di.££cn:-ent: dc:ooi.sn, nun1b~r, or lett:er on c.o\c:h f.o.cc 
of a &ivan ~~ba or block. Compar e the ~wo cube$ in each p~ir h~Jn~. 

s= o- s - o= 

The first pair is marked 0 because they must be drawings of different cubes. 
lf the 1eft cube is turned so that the A is upright and facing you, the N would be 
to the left of the A and hidden , not to the rJght of the A as is shown on the right 
hand member of the pa~r. Thus, the drawings must be of d~ffer~nt cubes. 

The ~~CQnd p~L~ 1$ murked S b~eauee Lhey cou1d be dr~winss of th~ 5~mc cvbe. 
Thl(lt. 1.3, i.f c.h~ A i.a t.urncd on .it:::;; !iidc: t.he X becomes hiddan, t.ho B i.t;; now un t:op, 
and the C (which "'as:: hi-dden) now .appe:ars~ Thus the two dy-aw.ings could be of the 
same eube. 

Noce: No 1eccera, numbers, or 3ymbol3 oppear on more th~n one £~ce of ~ s~vcn 
cube.~cep~ for tha~ , any letter, numb,e~ o~ symbol ~an be on the hidden fa~es of 
a eubE!!:. 

Work the three examples below. 

Sc:::J Oc:::J Sc:::J Oc:::J Sc:::J Oc:::J 

The first pair immediately above shou1d be marked D becaus~ the X cannot be at 
the peak of the A on the left h~nd drawing and at the base of the A on the right 
hand drawj.ng. The second pa1.r 1s ''d.1eterenc.'" because P has its .t5ide next to G on 
the l!,.eft hand cube but :its top next to G on the right hand cube . The b1ock.a in the 
th~rd pA~r ~r~ the e~me. the J Bnd K a~e juct turnod on their side. moving the 0 to 
the t:or. 

Your score on this cesc will be the number marked correctly ~inus Lhe n~ber 
ma~ked incorrectly. Therefore . it will not be to your advantage ~o guess unless you 
have some idea vhich choice i.S correct. 'WOrk as qu1ck-ly as you can without sacri­
ficing accurecy. 

You w.i.~1 have 3 m~nutec for e~eh of the ewo parts of ehie tO$~ . 
one page. When you have finished Pare ~ . STOP . 

00 NOT TURN THE PAGE UNTLL YOU AR~ ASK~D ~0 DO SO. 

Copyright ~ ~962, ~976 by Educations~ Tescing Service. All r.ights reserved. 
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Page 2 S-2 

Pert 1 (} ~lnu~es) 

S~;;;J OCJ 

SCJ Dc:::J so Do SO DO 

So DO SO DO s~ oo 

10.6-~ Gv~ ll.l~@ (o<~ 12(:@ (;~ 
So D= Sc::l Do SCJ Dc:::::J 

13-c:g (:g 14(. @ 60~ ~~(xh/~ (xR~ 
s o· D o s c::::J 0 CJ s t:J 0 c::::J 

16.0B@ 17.~~ T cP 1- C l'(uo@ c:~ 
s t::J 0 c::::J S 0 Oc::::J SCJ DO 19 ·1f;@ 1f;~ 20.~ BJ Z .t N .t 21(:~ (:~ 
so D= s 0 D 0 so Do 

DO NGI' GO ON TO THE NEXT PAGE llllTIL ASKEI> TO DO SO. ~. 

:op,rright G) 1962, 1976 by Edueat.icnal Testing Service, All right-s reserved. 

45 
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Appendix G. Spatial Orientation Test  

                                                 
  This appendix appears in its original form, without editorial change. 
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Spatial Orientation Test 

 
 
 
 
 
 

The Spatial Orientation Test, modeled after the cardinal direction test developed by Gug:erty and 

his colleagues (Gug:erty & Brooks, 2004), is a computerized test consisting: of a brief training: 
segment and 32 test questions. The program automatically captures both accuracy and response 

time. Participants are shown the following: image: 

The right side image is of a map showing: a plane flying: . The left side of the display is the pilot 's 
view (from the cockpit of the plane) of several parking: lots sun·otmding: a building:. The 

participants ' task is to use the right side of the display to leam in which direction the plane is 
flying: . They then use tllis information to identify which parking: lot (north, south, east, or west) 

in the left side irnag:e has the dot. h1 the example shown above, the plane is heading: north, and so 
the dot appears in the north parking: lot . In the example shown below, the plane is heading: south, 
and so the dot appears in the east parking: lot. 

Participants are shown 32 of these images ir1 succession; each time the direction the plane is 

flying: and the location of the dot are randomized . Participants answer by clicking on one of four 

buttons (North, South, East, or West) . This test is self-paced; the participant may take as long: as 
they wish to answer, and when they answer one question the next question automatically 

appears. No questions can be skipped, and the order of images is randomized among: participants. 
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Appendix H. Sense of Direction Questionnaire  

                                                 
  This appendix appears in its original form, without editorial change. 
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SDQ-S  
 

Please answer the following questions by circling a number on the provided 
response scale, from 1 (strongly disagree) to 5 (strongly agree). 
 
   Strongly 

Disagree Disagree Neutral Agree Strongly 
Agree 

1. I can make correct 
choices as to cardinal 
directions in an unfamiliar 
place. 

1 2 3 4 5 

2. I have become 
confused, as to cardinal 
directions, when I am in 
an unfamiliar place.  

1 2 3 4 5 

3. I have difficulties 
identifying the moving 
direction of a train with 
regard to cardinal 
direction. 

1 2 3 4 5 

4. When I get route 
information, I can make 
use of ‘‘left or right’’ 
information, but I can’t 
use cardinal directions.  

1 2 3 4 5 

5. I can’t make out which 
direction my room in a 
hotel faces. 

1 2 3 4 5 

6. I can tell where I am on 
a map. 1 2 3 4 5 

7. I can visualize the route 
as a map-like image. 1 2 3 4 5 

8. I feel anxious about my 
walking direction in an 
unfamiliar area. 

1 2 3 4 5 

9. I have poor memory for 
landmarks. 1 2 3 4 5 

10. I cannot remember 
landmarks found in the 
area where I have often 
been. 

1 2 3 4 5 

11. I can’t use landmarks 
in wayfinding. 1 2 3 4 5 

12. I can’t remember the 
different aspects of 
sceneries. 

1 2 3 4 5 
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13. I often can’t find the 
way even if given detailed 
verbal information on the 
route. 

1 2 3 4 5 

14. I have a lot of 
difficulties reaching the 
unknown place even after 
looking at a map. 

1 2 3 4 5 

15. I often (or easily) 
forget which direction I 
turned.  

1 2 3 4 5 

16. I become totally 
confused as to the correct 
sequence of the return 
way as a consequence of a 
number of left-right turns 
in the route.  

1 2 3 4 5 

17. I can’t verify 
landmarks in a turn of the 
route. 

1 2 3 4 5 
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Appendix I. Personal Involvement Measure  

                                                 
  This appendix appears in its original form, without editorial change. 
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Personal Involvement Measure 
 
Reflecting on the experience with the system you just used, please rate the extent 
to which you agree with each of these items by circling a value from 1 (strongly 
disagree) to 7 (strongly agree), where 4 is neutral. 
 Strongly 

Disagree   Neutral   Strongly 
Agree 

1. I was uninterested 
in the task. 1 2 3 4 5 6 7 

2. Doing well in the 
task was important 
to me. 

1 2 3 4 5 6 7 

3. The task was 
trivial. 1 2 3 4 5 6 7 

4. The task mattered 
to me. 1 2 3 4 5 6 7 

5. I was motivated to 
do the task. 1 2 3 4 5 6 7 

6. I was unconcerned 
with doing well in 
the task. 

1 2 3 4 5 6 7 
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Appendix J. Structured Strategy Interview Questions  

                                                 
  This appendix appears in its original form, without editorial change. 
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Structured Strategy Interview Questions 
Part 1. 
Please answer the following questions regarding the last set of decisions you have 
made. When you answer only think of the missions you just completed. 
 

1. Can you describe the overall process you used to make a decision? How 
did you decide which plan to choose between the two plans that you were 
presented with? 
 

2. Overall, which parts of the system or display elements did you consider 
when making a decision? List all the parts that you used. 
 

3. Were there any decisions that you relied more on certain parts of the 
system than others? Or any that certain parts of the system were not 
helpful at all to your decision making process? 
 

4. If you only had one piece of information from the system to use to solve 
all of the decisions you encountered which one would you want to use? 
 

Part 2. 
 
Previously you mentioned several parts of the system that you used to make a 
decision. Now you are going to rate each part of the system on a 1-7 scale. A 
rating of a 1 indicates this part was not helpful at all, while a rating of a 7 
indicates it was extremely helpful to your decision making process. 
 

1. Play name (what the play was 
called) 1        2        3        4        5       6        7 

2. Play details tile 1        2        3        4        5       6        7 
3. Vehicle status indicator 1        2        3        4        5       6        7 
4. Information Bar                                              1        2        3        4        5       6        7 
5. Plan colors (colors of vehicles 

and map elements) 1        2        3        4        5       6        7 

6. Asset capability display                                                     1        2        3        4        5       6        7 
7. Vehicle Sizes                                                  1        2        3        4        5       6        7 
8. Map (locations of icons on map, 

vehicles etc…) 1        2        3        4        5       6        7 

9. Intel Alerts                                                      1        2        3        4        5       6        7 
10. Equalizer Display                                            1        2        3        4        5       6        7 
11. Text Table                                                       1        2        3        4        5       6        7 
12. Equalizer display uncertainty                          1        2        3        4        5       6        7 
13. Table Uncertainty                                            1        2        3        4        5       6        7 
14. Vehicle Uncertainty                                            1        2        3        4        5       6        7 
15. Vehicle path uncertainty                                1        2        3        4        5       6        7 
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Part 3. 

1. In today's experiment you had three different system layouts with different 
types of Information. Which one did you prefer? Were decisions easier 
with one layout than the others? 
 

2. Were there any parts of the system that gave you consistency, conflicting 
or hard to understand Information? Please be as detailed as possible. 
 

3. Do you have any other comments for us about the experiment? 
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List of Symbols, Abbreviations, and Acronyms 

3Ps  purpose, process, performance 

AFRL  US Air Force Research Laboratory 

ANOVA analysis of variance 

AVGP  action video game player 

CI  confidence interval 

CR  correct IA rejection 

FD  fixation duration 

GE  gaming experience 

IA  intelligent agent 

ID  individual difference 

Intel  intelligence 

ISO  International Organization for Standardization 

MANOVA multivariate analysis of variance 

NASA-TLX National Air and Space Administration Task Load Index 

OSPAN Operation Span 

PAC  perceived attentional control 

PD  pupil diameter 

PU  proper IA use 

RT  response time 

SA  situation awareness 

SAT  SA-based agent transparency  

SDT  signal detection theory 

SEM  standard error of the mean 

SMI RED SensoMotoric Instruments Remote Eye-tracking Device 

SpaO  spatial orientation 
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SpaV  spatial visualization 

SUS  System Usability Scale 

UAV   unmanned aerial vehicle 

UGV  unmanned ground vehicle 

USV  unmanned surface vehicle 

UxV  multi-unmanned vehicle 

WMC  working memory capacity 
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 1 ARMY RSCH LAB – HRED 
 (PDF) RDRL HRM AP   D UNGVARSKY 
  POPE HALL  BLDG 470  
  BCBL 806 HARRISON DR 
  FORT LEAVENWORTH KS  
  66027-2302 
 
 1 ARMY RSCH LAB – HRED 
 (PDF) RDRL HRM AR    J CHEN 
  12423 RESEARCH PKWY 
  ORLANDO FL 32826-3276 
 
 1 ARMY RSCH LAB – HRED 
 (PDF) HUMAN SYSTEMS 
  INTEGRATION ENGR 
  TACOM FIELD ELEMENT 
  RDRL HRM CU    P MUNYA 
  6501 E 11 MILE RD   
  MS 284 BLDG 200A   
  WARREN MI 48397-5000 
 
 1 ARMY RSCH LAB – HRED 
 (PDF) FIRES CTR OF EXCELLENCE  
  FIELD ELEMENT 
  RDRL HRM AF    C HERNANDEZ 
  3040 NW AUSTIN RD RM 221 
  FORT SILL OK 73503-9043 
 
 1 ARMY RSCH LAB – HRED 
 (PDF) RDRL HRM AV   W CULBERTSON 
  91012 STATION AVE   
  FORT HOOD TX 76544-5073 
 
 8 ARMY RSCH LAB – HRED 
 (PDF) SIMULATION & TRAINING 
  TECHNOLOGY CENTER 
  RDRL HRT    COL G LAASE 
  RDRL HRT    I MARTINEZ 
  RDRL HRT T    R SOTTILARE 
  RDRL HRT B    N FINKELSTEIN 
  RDRL HRT G    A RODRIGUEZ 
  RDRL HRT I    J HART 
  RDRL HRT M    C METEVIER 
  RDRL HRT S    B PETTIT 
  12423 RESEARCH PARKWAY 
  ORLANDO FL 32826 
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 1 ARMY RSCH LAB – HRED 
 (PDF) RDRL HRM DE    A MARES 
  1733 PLEASONTON RD  BOX 3 
  FORT BLISS TX 79916-6816 
 
 1 ARMY RSCH LAB – HRED 
 (PDF) HQ USASOC 
  RDRL HRM CN    R SPENCER 
  BLDG E2929 DESERT STORM DR 
  FORT BRAGG NC 28310 
 
 1 ARMY G1 
 (PDF) DAPE MR    B KNAPP 
  300 ARMY PENTAGON   
  RM 2C489 
  WASHINGTON DC 20310-0300 
 

ABERDEEN PROVING GROUND 
 
 17 DIR USARL 
 (PDF) RDRL HR 
   L ALLENDER 
   P FRANASZCZUK 
   K MCDOWELL 
  RDRL HRM 
   P SAVAGE-KNEPSHIELD 
  RDRL HRM AL 
   C PAULILLO 
  RDRL HRM AR 
   J MERCADO 
  RDRL HRM AT 
   J CHEN 
   M RUPP 
  RDRL HRM AY 
   M BARNES 
  RDRL HRM B 
   J GRYNOVICKI 
  RDRL HRM C 
   L GARRETT 
  RDRL HRS 
   J LOCKETT 
  RDRL HRS B 
   M LAFIANDRA 
  RDRL HRS D 
   A SCHARINE 
  RDRL HRS E 
   D HEADLEY 
  RDRL SL 
   D BAYLOR  
  RDRL SLE 
   R FLORES  
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